In geometry, the Schiffler point of a triangle is a triangle center, a point defined from the triangle that is equivariant under Euclidean transformations of the triangle. This point was first defined and investigated by Schiffler et al. (1985).

Diagram of the Schiffler point on an arbitrary triangle
Diagram of the Schiffler Point
  Triangle ABC
  Lines joining the midpoints of each angle bisector to the vertices of ABC
  Lines perpendicular to each angle bisector at their midpoints
  Euler lines; concur at the Schiffler point Sp

Definition

edit

A triangle ABC with the incenter I has its Schiffler point at the point of concurrence of the Euler lines of the four triangles BCI, △CAI, △ABI, △ABC. Schiffler's theorem states that these four lines all meet at a single point.

Coordinates

edit

Trilinear coordinates for the Schiffler point are

 

or, equivalently,

 

where a, b, c denote the side lengths of triangle ABC.

References

edit
  • Emelyanov, Lev; Emelyanova, Tatiana (2003). "A note on the Schiffler point". Forum Geometricorum. 3: 113–116. MR 2004116.[permanent dead link]
  • Hatzipolakis, Antreas P.; van Lamoen, Floor; Wolk, Barry; Yiu, Paul (2001). "Concurrency of four Euler lines". Forum Geometricorum. 1: 59–68. MR 1891516.
  • Nguyen, Khoa Lu (2005). "On the complement of the Schiffler point". Forum Geometricorum. 5: 149–164. MR 2195745. Archived from the original on 2007-01-15. Retrieved 2007-01-17.
  • Schiffler, Kurt (1985). "Problem 1018" (PDF). Crux Mathematicorum. 11: 51. Retrieved September 24, 2023.
  • Veldkamp, G. R. & van der Spek, W. A. (1986). "Solution to Problem 1018" (PDF). Crux Mathematicorum. 12: 150–152. Retrieved September 24, 2023.
  • Thas, Charles (2004). "On the Schiffler center". Forum Geometricorum. 4: 85–95. MR 2081772. Archived from the original on 2007-03-19. Retrieved 2007-01-17.
edit