Sharon C. Glotzer is an American scientist and "digital alchemist",[1] the Anthony C. Lembke Department Chair of Chemical Engineering, the John Werner Cahn Distinguished University Professor of Engineering and the Stuart W. Churchill Collegiate Professor of Chemical Engineering at the University of Michigan, where she is also professor of materials science and engineering, professor of physics, professor of macromolecular science and engineering, and professor of applied physics. She is recognized for her contributions to the fields of soft matter and computational science, most notably on problems in assembly science and engineering, nanoscience, and the glass transition, for which the elucidation of the nature of dynamical heterogeneity in glassy liquids is of particular significance. She is a member of the National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences.
Education
editGlotzer obtained her BSc in physics at the University of California, Los Angeles, in 1987, and her PhD in 1993 in theoretical soft condensed matter physics research under the guidance of H. Eugene Stanley at Boston University.[2]
Academic career
editSharon Glotzer joined the National Institute of Standards and Technology NIST in Gaithersburg, Maryland, in 1993 as a National Research Council postdoctoral fellow in the Polymers Division of the Materials Science & Engineering Laboratory. She became a permanent member of the Polymers Division, and was the co-founder, deputy director, and then director of the NIST Center for Theoretical and Computational Materials Science from 1994 to 2000. In January 2001 she moved to the University of Michigan as a tenured associate professor in Chemical Engineering and in Materials Science & Engineering. She is now the Anthony C. Lembke Department Chair of Chemical Engineering, the John Werner Cahn Distinguished University Professor of Engineering, and the Stuart W. Churchill Collegiate Professor of Chemical Engineering. Glotzer holds additional appointments in Materials Science and Engineering, Physics, Applied Physics, and Macromolecular Science and Engineering, and is a core member of the Biointerfaces Institute. She is a member of several boards, including the board of directors of the Materials Research Society, and the board on Chemical Sciences and Technology of the National Academies of Sciences, Engineering, and Medicine. She serves as associate editor of the leading nanoscience journal ACS Nano.
Research and achievements
editGlotzer made fundamental contributions to the field of the glass transition, for which the molecular dynamics simulation of Lennard-Jones particles exhibiting dynamical heterogeneity in the form of string-like motion in a 3D-liquid[3] is of particular significance.[4] In addition, her paper together with Michael J. Solomon on anisotropy dimensions of patchy particles[5] has become a classic work, inspiring research directions of groups around the world. Glotzer and collaborators also hold the record for the densest tetrahedron packing and discovered that hard tetrahedrons can self-assemble into a dodecagonal quasicrystal.[6]
Glotzer and collaborators coined the term ‘Directional Entropic Forces’[7] in 2011 to denote the effective interaction that drives anisotropic hard particles to align their facets during self-assembly and/or crystallization. This idea, which builds on Onsager's work on spherocylinders,[8] allows for predictions of expected assembled crystal and crystal-like structures from attributes of the particles' shape.[9]
According to Google Scholar, her publications have received over 22,000 citations and her h-index is 75.[10]
Honors and awards
editGlotzer was elected a member of the National Academy of Engineering in 2019 for the development of computer-based design principles for assembly engineering and manufacturing of advanced materials and nanotechnology.[11] She was also elected a member of the National Academy of Sciences in 2014 and the American Academy of Arts and Sciences in 2011. She is a Fellow of the American Physical Society, the American Association for the Advancement of Science, the American Institute of Chemical Engineers, and the Materials Research Society. She is a member of the second inaugural class of Department of Defense National Security Science and Engineering (now Vannevar Bush) Faculty Fellows, and was named a Simons Investigator[12] in 2012, part of the inaugural class of Investigators. Like the MacArthur "Genius" Awardees, both Vannevar Bush Faculty Fellows and Simons Investigators receive significant funding to pursue unrestricted basic research. Glotzer is the recipient of numerous awards, including the [Nanoscale Science & Engineering Forum Award, the Alpha Chi Sigma Award and the Charles M.A. Stine Award, all from the American Institute of Chemical Engineers (AIChE); the MRS Medal from the Materials Research Society; the Aneesur Rahman Prize in Computational Physics and the Maria Goeppert-Mayer Award, both from the American Physical Society; a Presidential Early Career Award for Scientists and Engineers (PECASE); and a Department of Commerce Bronze Medal Award for Superior Federal Service. In 2014, she became an associate editor of ACS Nano.[13]
Footnotes
edit- ^ "'Digital Alchemist' Seeks Rules of Emergence". Quanta Magazine. 8 March 2017. Retrieved 23 October 2018.
- ^ "Sharon C. Glotzer - Chemical Engineering". College of Engineering, University of Michigan. Retrieved 9 February 2013.
- ^ Kob, Walter; Donati, Claudio; Plimpton, Steven J.; Poole, Peter H.; Glotzer, Sharon C. (1997). "Dynamical Heterogeneities in a Supercooled Lennard-Jones Liquid". Physical Review Letters. 79 (15): 2827–2830. arXiv:cond-mat/9706075. Bibcode:1997PhRvL..79.2827K. doi:10.1103/PhysRevLett.79.2827. S2CID 14823693.
- ^ Sillescu, Hans (1999). "Heterogeneity at the glass transition: a review". Journal of Non-Crystalline Solids. 243 (2–3): 81–108. Bibcode:1999JNCS..243...81S. doi:10.1016/S0022-3093(98)00831-X.
- ^ Glotzer SC; Solomon MJ (2007). "Anisotropy of building blocks and their assembly into complex structures". Nature Materials. 6 (8): 557–562. doi:10.1038/nmat1949. PMID 17667968.
- ^ Haji-Akbari, Amir; Engel, Michael; Keys, Aaron S.; Zheng, Xiaoyu; Petschek, Rolfe G.; Palffy-Muhoray, Peter; Glotzer, Sharon C. (2009). "Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra". Nature. 462 (7274): 773–777. arXiv:1012.5138. Bibcode:2009Natur.462..773H. doi:10.1038/nature08641. PMID 20010683. S2CID 4412674.
- ^ Damasceno, Pablo F.; Engel, Michael; Glotzer, Sharon C. (2012). "Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces". ACS Nano. 6 (1): 609–14. arXiv:1109.1323. doi:10.1021/nn204012y. PMID 22098586. S2CID 12785227.
- ^ Onsager, Lars (1949). "The Effects of Shape on the Interaction of Colloidal Particles". Annals of the New York Academy of Sciences. 51 (4): 627–659. Bibcode:1949NYASA..51..627O. doi:10.1111/j.1749-6632.1949.tb27296.x. S2CID 84562683.
- ^ Damasceno, Pablo F.; Engel, Michael; Glotzer, Sharon C. (2012). "Structural Diversity and the Role of Particle Shape and Dense Fluid Behavior in Assemblies of Hard Polyhedra". arXiv:1202.2177 [cond-mat.soft].
- ^ "Google Scholar: Sharon Glotzer". Retrieved 10 August 2018.
- ^ "National Academy of Engineering Elects 86 Members and 18 Foreign Members". National Academy of Engineering. Retrieved 11 February 2019.
- ^ Simons' Investigator, simonsfoundation.org
- ^ Mulvaney, Paul (2015). "Nanoscience vs Nanotechnology—Defining the Field". ACS Nano. 9 (3): 2215–7. doi:10.1021/acsnano.5b01418. PMID 25802086.
Articles
edit- P F Damasceno; M Engel; S C Glotzer (2012). "Predictive Self-Assembly of Polyhedra into Complex Structures". Science. 337 (6093): 453–457. Bibcode:2012Sci...337..453D. CiteSeerX 10.1.1.455.6962. doi:10.1126/science.1220869. PMID 22837525. S2CID 7177740.
- W Kob; C Donati; S J Plimpton; P H Poole; S C Glotzer (1997). "Dynamical Heterogeneities in a Supercooled Lennard-Jones Liquid". Physical Review Letters. 79 (15): 2827–2830. arXiv:cond-mat/9706075. Bibcode:1997PhRvL..79.2827K. doi:10.1103/PhysRevLett.79.2827. S2CID 14823693.
- C Donati; J F Douglas; W. Kob; S J Plimpton; P H Poole; S C Glotzer (1998). "Stringlike Cooperative Motion in a Supercooled Liquid". Physical Review Letters. 80 (15): 2338–2341. arXiv:cond-mat/9706075. Bibcode:1997PhRvL..79.2827K. doi:10.1103/PhysRevLett.79.2827. S2CID 14823693.
- S C Glotzer; M J Solomon (2007). "Anisotropy of Building Blocks and their Assembly into Complex Structures". Nature Materials. 6 (8): 557–562. doi:10.1038/nmat1949. PMID 17667968.
- P F Damasceno; M Engel; S C Glotzer (2012). "Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces". ACS Nano. 6 (1): 609–614. arXiv:1109.1323. doi:10.1021/nn204012y. PMID 22098586. S2CID 12785227.
- G van Anders; D Klotsa; A S Karas; P M Dodd; S C Glotzer (2015). "Digital Alchemy for Materials Design: Colloids and Beyond". ACS Nano. 9 (10): 9542–9553. arXiv:1507.04960. doi:10.1021/acsnano.5b04181. PMID 26401754. S2CID 6684647.
External links
edit- "Sharon C. Glotzer". University of Michigan, Chemical Engineering Department. 2012. Retrieved 2012-05-26.
- "Glotzer's website". University of Michigan, Chemical Engineering Department. 2012. Retrieved 2012-05-26.
- Masterclass with Sharon Glotzer: Soft matter quasicrystals. Foundation for Fundamental Research on Matter (FOM). 2015. doi:10.5446/18037 (inactive 2 November 2024).
{{cite AV media}}
: CS1 maint: DOI inactive as of November 2024 (link) - Glotzer, Sharon (2015). Sharon Glotzer: Entropy, information and order in soft matter. Foundation for Fundamental Research on Matter (FOM). doi:10.5446/18033.