In mathematics, a Hurwitz-stable matrix,[1] or more commonly simply Hurwitz matrix,[2] is a square matrix whose eigenvalues all have strictly negative real part. Some authors also use the term stability matrix.[2] Such matrices play an important role in control theory.
Definition
editA square matrix is called a Hurwitz matrix if every eigenvalue of has strictly negative real part, that is,
for each eigenvalue . is also called a stable matrix, because then the differential equation
is asymptotically stable, that is, as
If is a (matrix-valued) transfer function, then is called Hurwitz if the poles of all elements of have negative real part. Note that it is not necessary that for a specific argument be a Hurwitz matrix — it need not even be square. The connection is that if is a Hurwitz matrix, then the dynamical system
has a Hurwitz transfer function.
Any hyperbolic fixed point (or equilibrium point) of a continuous dynamical system is locally asymptotically stable if and only if the Jacobian of the dynamical system is Hurwitz stable at the fixed point.
The Hurwitz stability matrix is a crucial part of control theory. A system is stable if its control matrix is a Hurwitz matrix. The negative real components of the eigenvalues of the matrix represent negative feedback. Similarly, a system is inherently unstable if any of the eigenvalues have positive real components, representing positive feedback.
See also
edit- M-matrix
- Perron–Frobenius theorem, which shows that any Hurwitz matrix must have at least one negative entry
- Z-matrix
References
edit- ^ Duan, Guang-Ren; Patton, Ron J. (1998). "A Note on Hurwitz Stability of Matrices". Automatica. 34 (4): 509–511. doi:10.1016/S0005-1098(97)00217-3.
- ^ a b Khalil, Hassan K. (1996). Nonlinear Systems (Second ed.). Prentice Hall. p. 123.
This article incorporates material from Hurwitz matrix on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.