Avena sterilis

(Redirected from Sterile oat)

Avena sterilis (animated oat, sterile oat, wild oat, wild red oat, winter wild oat; syn. Avena ludoviciana Durieu; Avena macrocarpa Moench;[2] Avena sterilis ssp. sterilis;[2] Avena sterilis ssp. ludoviciana) is a species of grass weed whose seeds are edible. Many common names of this plant refer to the movement of its panicle in the wind.[3]

Winter wild oat
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Avena
Species:
A. sterilis
Binomial name
Avena sterilis

Description

edit

Appearance

edit

Avena sterilis is a stout, broad-leaved grass that grows up to 1.5 m (4 ft 11 in) tall. At maturity, it has leaf blades that are up to 60 cm (24 in) long, and 6–14 mm (0.24–0.55 in) wide.[3]

 
Florets

It has an inflorescence that is either an equilateral or a slightly one-sided panicle. The spikelets usually have 3 florets,[2] but can have anywhere from 2 to 5.[3] The spikelets (without awns) are 1.7–4.5 cm (0.67–1.77 in) long; the glumes are 2.4–5 cm (0.94–1.97 in) long.[2]

The florets can either be a straw yellow or slightly reddish in colour. Occasionally, there can be reddish hairs at the base of the floret.[4]

The lemma is usually 1.5–4 cm (0.59–1.57 in) long.[2] The florets are elongate and taper at the top. The two florets closest to the glumes have a twisted dorsal awn that is 3–9 cm (1.2–3.5 in) long.[2][4]

Varieties and subspecies

edit

One can distinguish between the two subspecies, A. sterilis sterilis and A. sterilis ludoviciana, using the size of the reproductive parts of the flower.[2]

A study of 139 populations of A. sterilis L. in Spain revealed 6 varieties based on morphological classifications, though no new subspecies were formally described.[5]

Reproduction

edit

A. sterilis is hexaploid.[6] It an annual plant,[3][7] with a life cycle that mirrors many cereal crops.[4] While an individual plant is capable of producing as many as 200 seeds, the average seed production of a single plant is 13-21 seeds.[4] Seeds regularly live in the soil for upwards of two years, and can survive for as many as 5 years prior to germination.[4][2]

Distribution

edit

A. sterilis is native to the Mediterranean Basin and West, Central and South Asia, but is widely naturalized elsewhere.[1] The species grows on all continents except Antarctica.[4]

In North America, it grows as an introduced species in the U.S. states of California, Oregon,[8] New Jersey, Ohio, Pennsylvania,[4] and the Canadian provinces of Ontario and Quebec.[8][4]

Pests and pathogens

edit

A. sterilis is a host to the pathogenic nematode Ditylenchus dipsaci.[9] It is a host to the protist plant pathogen Sclerophthora macrospora.[10] It is also a wild host to Petrobia latens, commonly known as the brown wheat mite.[3] It is susceptible to two widespread diseases that infect Avena species, oat crown rust and stem rust.[11] It is also susceptible to the wheat dwarf virus.[3]

Relationship to humans

edit

Ancestor of domesticated oats

edit

Genetic analysis has shown that A. sterilis grass indigenous to Southwest Asia, and modern Iran, Iraq, and Turkey is the progenitor of domesticated oat crops such as A. sativa and A. byzantina.[6]

Modern agricultural weed

edit

A. sterilis produces seeds that are difficult to separate from grain.[3] Because of this, its seeds have spread around the world as a contaminant in wool, cereal grain, and seed.[3][4]

Because it thrives in the same conditions as many agricultural crops and has similar lifecycles, the grass directly competes with and reduces yield in arable crops.[12][13][14]

Castillejo-González et al., 2014 locate A. sterilis infested fields with almost perfect accuracy using QuickBird (satellite imagery) and various image classifiers.[15]

Herbicide resistance

edit

Avena sterilis ssp. ludoviciana with multiple herbicide resistance - at 2 sites of action (SOAs) - was first observed in Kermanshah, Khuzestan, Iran, in winter wheat cultivation in 2010.[16] These populations are known to be resistant to clodinafop-propargyl, iodosulfuron-methyl-sodium, and mesosulfuron-methyl.[16] Resistance to fenoxaprop-P-ethyl in Asl (and A. fatua) has evolved in several fields in England.[17] Although these Asl and A. fatua are also hybridising, it remains unproven if this is why they both have resistance, or in which direction this has occurred.[17] A. sterilis populations in Greece are almost all resistant to diclofop but susceptible to most other herbicides, including others of the same MOA (i.e., AACase inhibitors).[18] However, most Greek populations do have diclofop resistance and some other resistance to at least one other herbicide.[18]

References

edit
  1. ^ a b Rhodes, L.; Bradley, I.; Zair, W.; Maxted, N. (2016). "Avena sterilis". IUCN Red List of Threatened Species. 2016: e.T172204A19395364. doi:10.2305/IUCN.UK.2016-3.RLTS.T172204A19395364.en. Retrieved 20 November 2021.
  2. ^ a b c d e f g h Tidemann, Breanne D.; Geddes, Charles M.; Beckie, Hugh J. (2021). "3". In Chauhan, Bhagirath Singh (ed.). Biology and Management of Problematic Crop Weed Species. Academic Press. pp. 43–66. ISBN 9780128229170. Retrieved 11 May 2023.
  3. ^ a b c d e f g h "Avena sterilis (winter wild oat)". CABI Compendium. CABI: 8062. 7 January 2022. doi:10.1079/cabicompendium.8062. S2CID 253604348.
  4. ^ a b c d e f g h i "Weed Seed: Avena sterilis (Sterile oat)". Canadian Food Inspection Agency, Seeds Identification. Government of Canada. 7 November 2017. Archived from the original on 17 August 2022. Retrieved 10 May 2023.
  5. ^ Garcia-Baudin, J. M.; Hsalto, T.; Aguirre, R. (1981). "Differentes types morphologiques chez Avena sterilis L." [Different morphological types of Avena sterilis L.]. Fragmenta Herbologica Jugoslavica. 10 (1): 57–71.
  6. ^ a b Zhou, X.; Jellen, E. N.; Murphy, J. P. (1999). "Progenitor Germplasm of Domesticated Hexaploid Oat". Crop Science. 39 (4): 1208–1214. doi:10.2135/cropsci1999.0011183X003900040042x. Retrieved 11 May 2023.
  7. ^ "Avena sterilis L." Plants for a Future Database. Plants for a Future. Archived from the original on 10 May 2023. Retrieved 10 May 2023.
  8. ^ a b "Avena sterilis L." NRCS PLANTS Database. United States Department of Agriculture. Archived from the original on 5 July 2022. Retrieved 11 May 2023.
  9. ^ Abbad Andaloussi, F.; Bachikh, J. (2001). "Studies on the host range of Ditylenchus dipsaci in Morocco". Nematologia Mediterranea. 29 (1): 65–67.
  10. ^ Singh, P. J.; Bedi, P. S. (1991). "New graminaceous hosts of Sclerophthora macrospora". Plant Disease Research. 6 (1): 65–67.
  11. ^ Niekerk, B. D.; Pretorius, Z. A.; Boshoff, W. H. P. (2001). "Pathogenic variability of Puccinia coronata f. sp. avenae and P. graminis f. sp. avenae on oat in South Africa". Plant Disease. 85 (10): 1085–1090. doi:10.1094/PDIS.2001.85.10.1085. PMID 30823281.
  12. ^ Pandey, A. K.; Prasad, K.; Singh, P.; Singh, R. D. (1998). "Comparative yield loss assessment and crop-weed association in major winter crops of mid hills of N-W Himalayas". Indian Journal of Weed Science. 30 (1, 2): 54–57.
  13. ^ Walia, U. S.; Brar, L. S. (2001). "Competitive ability of wild oats (Avena ludoviciana Dur.) and broad leaf weeds with wheat in relation to crop density and nitrogen levels". Indian Journal of Weed Science. 33 (3, 4): 120–123.
  14. ^ Terry, P. J. (1984). A Guide to Weed Control in East African Crops. Nairobi, Kenya: Kenya Literature Bureau. p. 186.
  15. ^
    Phiri, Darius; Morgenroth, Justin (19 September 2017). "Developments in Landsat Land Cover Classification Methods: A Review". Remote Sensing. 9 (9): 967. Bibcode:2017RemS....9..967P. doi:10.3390/rs9090967.
    This review cites this research.
    Castillejo-González, Isabel Luisa; Peña-Barragán, José Manuel; Jurado-Expósito, Montserrat; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca (September 2014). "Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management". European Journal of Agronomy. 59: 57–66. Bibcode:2014EuJAg..59...57C. doi:10.1016/j.eja.2014.05.009.
  16. ^ a b "Multiple resistant Avena sterilis ssp. ludoviciana from Iran". International Survey of Herbicide Resistant Weeds. Herbicide Resistance Action Committee. Retrieved 2020-12-09.
  17. ^ a b Cavan, G.; Biss, P.; Moss, S R (1998). "Herbicide resistance and gene flow in wild-oats (Avena fatua and Avena sterilis ssp. ludoviciana)". Annals of Applied Biology. 133 (2). Wiley: 207–217. doi:10.1111/j.1744-7348.1998.tb05821.x. ISSN 0003-4746.
  18. ^ a b Travlos, Ilias S.; Giannopolitis, Costas N.; Economoua, Garifalia (2011-11-01). "Diclofop resistance in sterile wild oat (Avena sterilis L.) in wheat fields in Greece and its management by other post-emergence herbicides". Crop Protection. 30 (11). Elsevier: 1449–1454. Bibcode:2011CrPro..30.1449T. doi:10.1016/j.cropro.2011.07.001. ISSN 0261-2194. Retrieved 2020-12-09.
edit