In mathematics, Nemytskii operators are a class of nonlinear operators on Lp spaces with good continuity and boundedness properties. They take their name from the mathematician Viktor Vladimirovich Nemytskii.
General definition of Superposition operator
editLet be non-empty sets, then — sets of mappings from with values in and respectively. The Nemytskii superposition operator is the mapping induced by the function , and such that for any function its image is given by the rule The function is called the generator of the Nemytskii operator .
Definition of Nemytskii operator
editLet Ω be a domain (an open and connected set) in n-dimensional Euclidean space. A function f : Ω × Rm → R is said to satisfy the Carathéodory conditions if
- f(x, u) is a continuous function of u for almost all x ∈ Ω;
- f(x, u) is a measurable function of x for all u ∈ Rm.
Given a function f satisfying the Carathéodory conditions and a function u : Ω → Rm, define a new function F(u) : Ω → R by
The function F is called a Nemytskii operator.
Theorem on Lipschitzian Operators
editSuppose that , and
where operator is defined as for any function and any . Under these conditions the operator is Lipschitz continuous if and only if there exist functions such that
Boundedness theorem
editLet Ω be a domain, let 1 < p < +∞ and let g ∈ Lq(Ω; R), with
Suppose that f satisfies the Carathéodory conditions and that, for some constant C and all x and u,
Then the Nemytskii operator F as defined above is a bounded and continuous map from Lp(Ω; Rm) into Lq(Ω; R).
References
edit- Renardy, Michael & Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. p. 370. ISBN 0-387-00444-0. (Section 10.3.4)
- Matkowski, J. (1982). "Functional equations and Nemytskii operators". Funkcial. Ekvac. 25 (2): 127–132.