Taupō Volcano

(Redirected from Taupo Caldera)

Lake Taupō, in the centre of New Zealand's North Island, fills the caldera of the Taupō Volcano, a large rhyolitic supervolcano. This huge volcano has produced two of the world's most powerful eruptions in geologically recent times.

Taupō Volcano
Volcano, lake, and caldera locations in the Taupō Volcanic Zone
Highest point
Elevation452 m (1,483 ft)[1]
ProminenceMotutaiko Island
Coordinates38°48′20″S 175°54′03″E / 38.80556°S 175.90083°E / -38.80556; 175.90083
Dimensions
Width33 km (21 mi)
Geography
Taupō Volcano is located in New Zealand
Taupō Volcano
Taupō Volcano
Taupō Volcano is located in North Island
Taupō Volcano
Taupō Volcano
Taupō Volcano (North Island)
CountryNew Zealand
RegionWaikato
Geology
Rock agePleistocene - Meghalayan (0.3–0.0018 Ma )
Mountain typeCaldera
Volcanic regionTaupō Volcanic Zone
Last eruptionAbout 250 CE
Climbing
AccessState Highway 1

The volcano is in the Taupō Volcanic Zone within the Taupō Rift, a region of rift volcanic activity that extends from Ruapehu in the south, through the Taupō and Rotorua districts, to Whakaari / White Island, in the Bay of Plenty.

Horomatangi ReefHatepe eruptionMotutaiko IslandHoromatangi ReefMotutaiko IslandMotutaiko IslandAcacia Bay

History

edit

Taupō began erupting about 300,000 years ago. The main eruptions that still affect the surrounding landscape are the dacitic Mount Tauhara eruption 65,000 years ago, the Oruanui eruption about 25,500 years ago,[2][a] which is responsible for the shape of the modern caldera, and the Hatepe eruption, dated 232 ± 10 CE.[5][6] There have been many more eruptions, with major ones every thousand years or so (see timeline of last 10,000 years of eruptions).[7][8][9] The Oruanui eruption in particular destroyed or obscured much evidence of previous eruptive activity.[10]: 5 

Taupō Volcano has not erupted for approximately 1,800 years; however, with research beginning in 1979 and published in 2022, the data collated over the 42-year period shows that Taupō Volcano is active with periods of volcanic unrest and has been for some time.[11] Some volcanoes within the Taupō Volcanic Zone have erupted more recently. Mount Tarawera had a moderately violent VEI-5 eruption in 1886, and Whakaari/White Island is frequently active, erupting most recently in December 2019. Geologic studies published in 1888 following the eruption of Mount Tarawera first raised the possibility that there was a volcano under Lake Taupō, rather than the more obvious volcanoes near Mount Tongariro, to explain the likely source of the extensive surface pumice deposits of the central North Island.[12]

Geology

edit

The Taupō Volcano erupts rhyolite, a viscous magma, with a high silica content, a feature associated with the middle portion of the Taupō Volcanic Zone within the Taupō Rift. This is an intra-arc rift in the eastern part of the continental Australian Plate, resulting from an oblique convergence with the Pacific Plate in the Hikurangi subduction zone.[13] In this region the Moho discontinuity starts about 25–30 km (16–19 mi) beneath the surface beyond the modern Taupō Rift boundaries to the west and east, but there is an area of strong contrast in seismic velocity at 16 kn (30 km/h; 18 mph) depth that is postulated to be due to intruded crust from where the feed magma is evolving.[13] Studies show large areas of partial melt below 10 km (6.2 mi) with a brittle-ductile rosk transition at approximately 6–8 km (3.7–5.0 mi) beneath the surface.[13] For unknown as yet reasons, possibly associated with the present high rate of rift spreading and the recent subduction of the Hikurangi Plateau this area is very productive in its surface volcanism.[13]

If the magma does not contain much gas, rhyolite tends to just form a lava dome, and such eruptions are more common. However, when mixed with gas or steam, rhyolitic eruptions can be extremely violent. The magma froths to form pumice and ash, which is thrown out with great force. Such eruptions tend to be earlier in any given eruption cycle.

If the volcano creates a stable plume, high in the atmosphere, the pumice and ash are blown sideways, and eventually fall to the ground, draping the landscape like snow.

If the material thrown out cools more rapidly and becomes denser than the air, it cannot rise as high, and suddenly collapses back to the ground, forming a pyroclastic flow, hitting the surface like water from a waterfall, and spreading sideways across the land at enormous speed. When the pumice and ash settle, they are sufficiently hot to stick together as a rock called ignimbrite. Pyroclastic flows can travel hundreds of kilometres an hour.

Earlier eruptions

edit
 
Recent vents and caldera structures Taupō Volcano. Present active geothermal systems are in light blue. A key to the vents is in the diagram

Earlier ignimbrite eruptions occurred further north than Taupō. Some of these were enormous, and two eruptions around 1.25 and 1.0 million years ago were big enough to generate an ignimbrite sheet that covered the North Island from Auckland to Napier.

While Taupō has been active for about 300,000 years, explosive eruptions have been more typical in the last 42,000 years.[14]: 108 

Oruanui eruption

edit
 
Map so centred to show approximate selected surface volcanic deposits, including all the present surface Oruanui and Hatepe ignimbrites. Tephra from these eruptions was much more widespread. Clicking on the map enlarges it, and enables panning and mouseover of volcano name/wikilink and ages before present. Key for the volcanics that are shown with panning is:   basalt (shades of brown/orange),   monogenetic basalts,
  undifferentiated basalts of the Tangihua Complex in Northland Allochthon,
  arc basalts,   arc ring basalts,
  dacite,
  andesite (shades of red),   basaltic andesite,
  rhyolite, (ignimbrite is lighter shades of violet),
and   plutonic. White shading is selected caldera features.
 
Oruanui eruption impact North Island in terms of approximate 10cm ash deposit (white shading) and approximate ignimbrite from pyroclastic flow (yellow shading).[15] The central red area is the Oruanui caldera with surrounding collapse crater in lighter red. It is superimposed on present day New Zealand although at the time New Zealand land mass was larger, as sea level was much lower.
 
Hatepe eruption impact of a 10-cm ash deposit (white shading) and ignimbrite from pyroclastic flow (yellow shading). The collapse caldera is in light red. It is superimposed on the present day North Island.
 
A large eruption column during the Oruanui eruption as it may have appeared from space

The Oruanui eruption (also known as the Kawakawa event)[16]: 118  of the Taupō Volcano was the world's largest known eruption in the past 70,000 years, with a Volcanic Explosivity Index of 8. It occurred around 25,500 years ago[a] and generated approximately 430 km3 (100 cu mi) of pyroclastic fall deposits, 320 km3 (77 cu mi) of pyroclastic density current (PDC) deposits (mostly ignimbrite) and 420 km3 (100 cu mi) of primary intracaldera material, equivalent to 530 km3 (130 cu mi) of magma.[17][15][18]

Modern Lake Taupō partly fills the caldera generated during this eruption.

Tephra from the eruption covered much of the central North Island with ignimbrite up to 200 m (660 ft) deep. The ignimbrite eruption(s) were possibly not as forceful as that of the later Hatepe eruption but the total impact of this eruption was somewhat greater. Most of New Zealand was affected by ashfall, with an 18 cm (7.1 in) ash layer left even on the Chatham Islands, 850 km (530 mi) away which included diatoms from erupted lake sediments.[19]: 2  Later erosion and sedimentation had long-lasting effects on the landscape, and caused the Waikato River to shift from the Hauraki Plains to its current course through the Waikato to the Tasman Sea.

Hatepe eruption

edit

The Hatepe eruption (also known as the Taupō or Horomatangi Reef Unit Y eruption) represents the most recent major eruption of the Taupō Volcano, and occurred about 1,800 years ago. It was the most powerful eruption in the world in the last 5,000 years.[20][21] The type of eruption that occurred is the most extreme volcanic hazard due to the pyroclastic flows very high mobility and heat content.[16]: 129  It has been stated to have had an energy release equivalent to about 150 ± 50 megatons of TNT.[16]: 129 

Stages of eruption

edit

The eruption went through several stages which were redefined in 2003 with at least 3 separate vents:[16]: 122–124 

  1. A minor eruption occurred beneath the ancestral Lake Taupō lasting hours, and producing 0.05 km3 (0.012 cu mi) of fine ash.
  2. A dramatic increase in activity produced a high eruption column from a second vent, and 2.5 km3 (0.60 cu mi) dry ash.
  3. A vent erupted mainly wet phreatoplinian ash but some dry magmatic ash to a total of 1.9 km3 (0.46 cu mi) over tens of hours.
  4. Either a short break occurred or two vents became active at the same time with one producing a wet dark ash- and obsidian-rich 1.1 km3 (0.26 cu mi) fall deposit, the Rotongaio fine phreatoplinian ash. At the end of the last phase or beginning of this there was a period of heavy rainfall.[16]: 122–123 
  5. A larger dry eruption ensued, which erupted 7.7 km3 (1.8 cu mi) ash/pumice over a huge area, over up to 17 hours, before partial column collapse with as many as eleven dry pyroclastic flow density currents resulting in 1.5 km3 (0.36 cu mi) of local ignimbrite deposits to the east of the present lake.[16]: 123 
  6. The most destructive part of the eruption then occurred. Part of the vent area collapsed, as part of a process that unleashed about 30 km3 (7.2 cu mi) of material, that formed a fast-moving, 600–900 km/h (370–560 mph) pyroclastic flow lasting no more than 15 minutes.
  7. Rhyolitic lava domes were extruded some years later, helping form the Horomatangi Reefs and Waitahanui bank.[22] These later smaller eruptions of unknown total size also created large pumice rafts and terminated within decades of the major eruption.[23]

The main pyroclastic flow devastated the surrounding area, climbing over 1,500 m (4,900 ft) to overtop the nearby Kaimanawa Ranges and Mount Tongariro, and covering the land within 80 ± 10 km (49.7 ± 6.2 mi) with ignimbrite from Rotorua to Waiouru.[14]: 129  Only Ruapehu was high enough to divert the flow.[14]: 128–9 

The power of the pyroclastic flow was so strong that in some places it eroded more material off the ground surface than it replaced with ignimbrite.[14]: 225  Valleys were filled with ignimbrite, evening out the shape of the land.

All vegetation within the area was flattened. Loose pumice and ash deposits formed lahars down all the main rivers.

 
Temporary maximum lake areas after the 232 ± 10 CE Hatepe eruption (dark blue shading). Two temporary Lake Reporoa's were created transiently, the larger first, and the second later smaller and very transient, before the dam at the present Lake Taupō outlet failed.

The eruption further expanded the lake, which had formed after the much larger Oruanui eruption. Its new deposits also briefly created another large lake to the Taupō Volcano's north that extended to the Reporoa Caldera which in due course broke out into the Waikato River valley and released over a short period 2.5 km3 (0.60 cu mi) of water.[24]: 109  The previous outlet of Lake Taupō was blocked, raising the lake 35 m (115 ft) above its present level,[16] until shortly after the first smaller flood, it broke out in a huge flood, that released about 20 km3 (4.8 cu mi) of water.[25]: 327 [24]: 109 

Dating the Hatepe eruption

edit

Many dates have been given for the Hatepe eruption. One estimated date was 181 CE from ice cores in Greenland and Antarctica.[26] It is possible that the meteorological phenomena described by Fan Ye in China and by Herodian in Rome[27] were due to this eruption, which would give a date of exactly 186.[28] However, ash from volcanic activity does not normally cross hemispheres,[29] and radiocarbon dating by R. Sparks has put the date at 233 CE ± 13 (95% confidence).[30] A 2011 14C wiggle-matching paper gave the date 232 ± 5 CE.[5] A 2021 review based on five sources reports 232 ± 10 CE.[6]

New Zealand was unpopulated at that time, so the nearest humans would have been in Australia and New Caledonia, more than 2,000 km (1,200 mi) to the west and northwest.

Current activity and future hazards

edit
 
Taupō Volcano is mainly under the large blue Lake Taupō seen from its north from low earth orbit with beyond to its south the smaller Lake Rotoaira, and the active stratovolcanoes of Tongariro and Ruapehu covered in this picture with snow.

Composition studies suggest the Taupō Volcano has had historic vents to the south and north of the present lake, and recent seismic activity does extend beyond the lake to its north and south.[10]: 15–19  To the north the border with the Maroa Caldera is ill-defined but most of the seismic activity is likely related to structures related to this caldera. While studies have identified one Taupō composition vent 20 km (12 mi) to the north of Lake Taupō, this presumably resulted from a dyke extusion about 26,000 years ago.[10]: Fig. 2b  Recent activity to the north of the lake is assigned in terms of magma bodies, to the Poihipi volcano under Wairakei.[10]: 16–17  As of 2024 it is possible that Taupō is in a state of internal instability that is susceptible to dynamic triggering by tectonic earthquakes, as the 2016 Kaikōura earthquake triggered a deformation event in the north-west portion of the volcano without seismic or deformation events being observed in closer volcanoes to that earthquake's epicentre.[31]: 5. Discussion 

From May through December 2022 there was increased earthquake activity with lakeside slumping and inundation from a small tsunami and ground deformation.[32] The Volcanic Alert Level for Taupō Volcano was raised to Volcanic Alert Level 1 (minor volcanic unrest) on 20 September 2022.[33]

While no witnessed eruptive event has been recorded from Taupō, there have been seventeen episodes of volcanic unrest since 1872, with the most recent being in 2019 and 2022–2023.[6] This manifested as swarms of seismic activity and ground deformation within the caldera. The present-day magma reservoir is estimated to be at least 250 km3 (60 cu mi) in volume and have a melt fraction of >20%–30%.[6]

Unrest from May 1922 to January 1923 saw several thousand earthquakes, with the highest reaching magnitude 6, causing chimneys to collapse. The events were misreported internationally, which caused self-evacuations and a drop in tourism in Taupō and Rotorua. A source in San Francisco incorrectly reported that there had been 60 deaths, when there had been none. Consequentially, the government appointed a publicity officer.[34]

While Taupō is capable of very large eruptions these remain very unlikely as the majority of the 29 eruptions of various magnitudes in the last 30,000 years have been much smaller.[35] Many have been dome-forming, which may have contributed to lake features such as Motutaiko Island and the Horomatangi Reefs.

Earthquake and tsunami hazards also exist. While most earthquakes are relatively small and associated with magma shifts, the moderate earthquakes associated with eruptions or the numerous rift-associated faults historically have produced tsunami events. The intra-rift Waihi fault, for example, has been associated with 6.5 magnitude earthquakes at recurrence intervals of between 490 and 1,380 years and at least one tsunami related to landslip at the Hipaua steaming cliffs.[36]

GNS Science continuously monitors Taupō using a network of seismographs and GPS stations.[35] The Horomatangi Reefs area of the lake is associated with active hydrothermal venting and high heat flow.[6] Monitoring of a volcano situated under a lake is challenging, and an eruption might occur with little or no meaningful notice.[35] Live data can be viewed on the GeoNet website.

History of geological understanding

edit
 
First map showing volcanic nature of Lake Taupō shoreline

While volcanism was recognised in the area following human occupation the recognition of the presence of a large volcano under Lake Taupō was not. Mātauranga Māori detailed that Horomātangi (Horo-matangi),[37] a tāniwha or water monster of the lake, resided in a cave adjacent to Motutaiko Island on the south of the lake.[38]

Ernst Dieffenbach described euptives now known to have been from the Taupō Volcano in his 1843 publication on New Zealand, but like many others until 1886 assigned them to the stratovolcanoes to the south of Lake Taupō.[14]: 123  Ferdinand von Hochstetter may well have suspected a volcano at Taupō,[14]: 123  and certainly identified Lake Taupō as the source of the pumice deposits along the Waikato River and interpreted the lake amongst the others in the region as caused by collapse in a volcanic plateau,[39] but was unable to investigate to exclude other possibilities.

By 1864 information from Hochstetter's 1859 survey and those of Stokes and Drury was published as the first geological map of the area and this shows a rim of rhyolytic deposits around all the northern two thirds of the shore line of Lake Taupō but without the full extent of the relevant surface deposits being characterised.[40] The area did not have a further high quality geological study until after the 1886 eruption of Mount Tarawera, and the discourse following this nearby eruption resulted in a much better understanding of volcanoes, including Taupō, so will be considered for context, to explain the shift in understanding from 1886 to 1888. Algernon Thomas interpreted this information to postulate that Taupō was a volcano.[12]: 18–22  One of the people responsible for this lack of a survey was Sir James Hector who was Director of the New Zealand Geological Survey from 1865. When commissioned to provide the first official report on the 1886 eruption from Tarawera his travels included Taupō.[41]: 1  The resulting report conclusion on the cause of the eruption "I think there can be little question that it is a purely hydro-thermal phenomenon, but on a gigantic scale; that it is quite local and not of deep-seated origin..."[41]: 6  generated controversy with some supporting this view due to their geological understanding of the time.[42]

Laurence Cussen, the District Surveyor in 1887 was unwilling to form a definite conclusion but observed "the jagged appearance of the volcanic rocks forming the steep northern and western shores leads at once to the conclusion that they were separated from the masses of which they originally formed part by some violent agency, either of eruption or subsidence. The islands and reefs in the lake are more than probably plugs of volcanic vents and lava-flows; and it would seem reasonable to infer that the lake owes its origin, firstly, to eruption, which was followed by a subsidence, and that subsequently some of the vents within it continued active as subaqueous volcanoes, the ejecta from which now form the comparatively level floor of the lake, having been worn away from the cones by denudation."[43]: 5  He deferred to others who he was collaborating with, in the same timeframe, and as already mentioned Thomas first crystallised the possibility in the geological literature that there was a volcano under Lake Taupō as the likely source of the extensive surface pumice deposits from field work including analysis of specimens forwarded by Cussen.[12]: 18–22 

In 1937 it was recognised that the deposit from the Hatepe eruption had been so hot to burn the forest over a 160 km (99 mi) distance, but this was not recognised as being due to a pyroclastic flow until 1956.[16]: 129 

The date of the most recent large eruption was first defined in the 1960s as being in the first few centuries AD based on radiocarbon dating.[44] In the 1970s activity was assigned as far back as 330,000 years ago with radiometric dating.[14]: 108 

Further understanding of the size of the Hatepe eruption from the Taupō volcano with its pyroclastic flows and vent location resulted from the work of Colin Wilson from 1980 onward.[14]: 109–111  The Oruanui eruption also became better understood with for example the influence of the eruptions on the sedimentology of the region taking several decades more to unravel.[45] Volcanology better modeled the processes of magma formation and eruption, with wider acceptance of a predominant model for how rhyolite eruptives in these cases formed from mantle derived basalts by 20-30% assimilation of the greywacke basement and fractional crystallisation to produce a magma mush.[46]

See also

edit

Notes

edit
  1. ^ a b The age of the Oruanui eruption has been determined by several independent methods and may be subject to further correction. A previous age of 26.5 ka,[3] has since been updated to IntCal20 correction to 25.675 ± 0.09 ka cal BP. In 2022 the ice core date of 25.318 ± .25 ka BP using the WD2014 timescale was corrected to 25.718 ka.[4] The review article used here as source says around 25,500 years ago which is not a precise statement like the later 2022 corrections.[2]

References

edit
  1. ^ "NZTopMap:Motutaiko Island". Archived from the original on 27 August 2022. Retrieved 27 August 2022.
  2. ^ a b Muscheler, Raimund; Adolphi, Florian; Heaton, Timothy J; Bronk Ramsey, Christopher; Svensson, Anders; van der Plicht, Johannes; Reimer, Paula J (2020). "Testing and Improving the IntCal20 Calibration Curve with Independent Records". Radiocarbon. 62 (4): 1079–1094. Bibcode:2020Radcb..62.1079M. doi:10.1017/RDC.2020.54. ISSN 0033-8222.: Volcanic Time Markers 
  3. ^ Dunbar, Nelia W.; Iverson, Nels A.; Van Eaton, Alexa R.; Sigl, Michael; Alloway, Brent V.; Kurbatov, Andrei V.; Mastin, Larry G.; McConnell, Joseph R.; Wilson, Colin J. N. (25 September 2017). "New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica". Scientific Reports. 7 (1): 12238. Bibcode:2017NatSR...712238D. doi:10.1038/s41598-017-11758-0. PMC 5613013. PMID 28947829.
  4. ^ Dong, Xiyu; Kathayat, Gayatri; Rasmussen, Sune O.; Svensson, Anders; Severinghaus, Jeffrey P.; Li, Hanying; Sinha, Ashish; Xu, Yao; Zhang, Haiwei; Shi, Zhengguo; Cai, Yanjun; Pérez-Mejías, Carlos; Baker, Jonathan; Zhao, Jingyao; Spötl, Christoph (4 October 2022). "Coupled atmosphere-ice-ocean dynamics during Heinrich Stadial 2". Nature Communications. 13 (1): 5867. Bibcode:2022NatCo..13.5867D. doi:10.1038/s41467-022-33583-4. ISSN 2041-1723. PMC 9532435. PMID 36195764.
  5. ^ a b Hogg, Alan; Lowe, David J.; Palmer, Jonathan; Boswijk, Gretel; Ramsey, Christopher Bronk (2011). "Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set". The Holocene. 22 (4): 439–449. Bibcode:2012Holoc..22..439H. doi:10.1177/0959683611425551. hdl:10289/5936. S2CID 129928745.
  6. ^ a b c d e Illsley-Kemp, Finnigan; Barker, Simon J.; Wilson, Colin J. N.; Chamberlain, Calum J.; Hreinsdóttir, Sigrún; Ellis, Susan; Hamling, Ian J.; Savage, Martha K.; Mestel, Eleanor R. H.; Wadsworth, Fabian B. (1 June 2021). "Volcanic Unrest at Taupō Volcano in 2019: Causes, Mechanisms and Implications". Geochemistry, Geophysics, Geosystems. 22 (6): 1–27. Bibcode:2021GGG....2209803I. doi:10.1029/2021GC009803.
  7. ^ A continent on the move: New Zealand geoscience into the 21st century. Graham, Ian J. et al.; The Geological Society of New Zealand in association with GNS Science, 2008. ISBN 978-1-877480-00-3. page 66, 168.
  8. ^ "Taupo the volcano" (a single sheet pamphlet), C.J.N. Wilson and B.F. Houghton, Institute of Geological & Nuclear Sciences, c2004.
  9. ^ "Information from GNS Science on the Taupō Volcano". Archived from the original on 5 February 2018. Retrieved 21 October 2011.
  10. ^ a b c d Barker, SJ; Wilson, CJN; Illsley-Kemp, F; Leonard, GS; Mestel, ERH; Mauriohooho, K; Charlier, BLA (2020). "Taupō: an overview of New Zealand's youngest supervolcano". New Zealand Journal of Geology and Geophysics. 64 (2–3): 320–346. doi:10.1080/00288306.2020.1792515. S2CID 225424075. Retrieved 28 November 2023.
  11. ^ "Bed of Lake Taupō rising and falling as magma moves around in active volcano below - study". Newshub. Archived from the original on 12 July 2022. Retrieved 12 July 2022.
  12. ^ a b c Thomas, A. P. W. (1888). Report on the Eruption of Tarawera and Rotomahana, N.Z. Wellington, New Zealand: Government Printer. pp. 18–22. Retrieved 17 August 2023.
  13. ^ a b c d Seebeck, H. A.; Nicol, P.; Villamor, J.Ristau; Pettinga, J. (2014). "Structure and kinematics of the Taupo Rift, New Zealand". Tectonics. 33 (6): 1178–1199. doi:10.1002/2014TC003569. S2CID 129430650.
  14. ^ a b c d e f g h Wilson, Colin James Ness (1983). Studies on the origins and emplacement of pyroclastic flows (PHD thesis (Thesis). Imperial College, London. hdl:10044/1/35788. Retrieved 23 September 2023.
  15. ^ a b Manville, Vern; Wilson, Colin J. N. (2004). "The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response". New Zealand Journal of Geology & Geophysics. 47 (3): 525–547. doi:10.1080/00288306.2004.9515074.
  16. ^ a b c d e f g h Lowe, David J; Pittari, Adrian (2021). "The Taupō eruption sequence of AD 232±10 in Aotearoa New Zealand: A retrospection (ニュージーランド・タウポ火山における 西暦 232±10 年噴火の推移)". Journal of Geography (Chigaku Zasshi 地学雑誌). 130 (1): 117–41. doi:10.5026/jgeography.130.117. hdl:10289/16150. ISSN 1884-0884. S2CID 235444050.
  17. ^ Wilson, Colin J. N. (2001). "The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview". Journal of Volcanology and Geothermal Research. 112 (1–4): 133–174. Bibcode:2001JVGR..112..133W. doi:10.1016/S0377-0273(01)00239-6.
  18. ^ Wilson, Colin J. N.; et al. (2006). "The 26.5 ka Oruanui Eruption, Taupō Volcano, New Zealand: Development, Characteristics and Evacuation of a Large Rhyolitic Magma Body". Journal of Petrology. 47 (1): 35–69. Bibcode:2005JPet...47...35W. doi:10.1093/petrology/egi066.
  19. ^ Harper, MA; Pledger, SA; Smith, EG; Van Eaton, AR; Wilson, CJ (2015). "Eruptive and environmental processes recorded by diatoms in volcanically dispersed lake sediments from the Taupo Volcanic Zone, New Zealand". Journal of Paleolimnology. 54 (263–77): 1–15. doi:10.1007/s10933-015-9851-5. S2CID 127263257.
  20. ^ "Taupo the eruption" (a single sheet pamphlet), C.J.N. Wilson and B.F. Houghton, Institute of Geological & Nuclear Sciences, c2004.
  21. ^ Wilson, C.J.N. and Walker, G.P.L., 1985. The Taupō eruption, New Zealand I. General aspects. Philosophical Transactions of the Royal Society of London, A314: 199–228.
  22. ^ Houghton, B.F. (2007). Field Guide – Taupo Volcanic Zone Archived 3 March 2016 at the Wayback Machine.
  23. ^ von Lichtan, I.J.; White, J.D.L.; Manville, V.; Ohneiser, C. (2016). "Giant rafted pumice blocks from the most recent eruption of Taupo volcano, New Zealand: Insights from palaeomagnetic and textural data". Journal of Volcanology and Geothermal Research. 318: 73–88. Bibcode:2016JVGR..318...73V. doi:10.1016/j.jvolgeores.2016.04.003.
  24. ^ a b Manville, V (18 April 2001). James D. L. White; N. R. Riggs (eds.). Sedimentology and history of Lake Reporoa: an ephemeral supra-ignimbrite lake, Taupo Volcanic Zone, New Zealand in Volcaniclastic sedimentation in lacustrine settings. Wiley. pp. 109–40. ISBN 1444304267.
  25. ^ Manville, V.; Segschneider, B.; Newton, E.; White, J.D.L.; Houghton, B.F.; Wilson, C.J.N. (2009). "Environmental impact of the 1.8 ka Taupo eruption, New Zealand: Landscape responses to a large-scale explosive rhyolite eruption". Sedimentary Geology. 220 (3–4): 318–336. doi:10.1016/j.sedgeo.2009.04.017.
  26. ^ Lake Taupō Official Site Archived 12 March 2007 at the Wayback Machine
  27. ^ Herodian of Antioch. "Chapter 14". History of the Roman Empire. Vol. Book 1. Archived from the original on 16 September 2019. Retrieved 8 August 2009. Stars remained visible during the day; other stars, extending to an enormous length, seemed to be hanging in the middle of the sky.
  28. ^ Barton, John (2001). The First New Zealand Book? — an Eyewitness account of the Taupō eruption of AD 186. New Plymouth: Trustees of the Dalberton Library. ISBN 0-473-08268-3.
  29. ^ "Iridium: tracking down the extraterrestrial element in sedimentary clays". New Scientist: 58. 1989. Archived from the original on 12 July 2022. Retrieved 4 December 2020.
  30. ^ Sparks, R.J.; Melhuish, W.H.; McKee, J.W.A.; Ogden, J.; Palmer, J.G. (1995). "14C calibration in the Southern Hemisphere and the date of the last Taupō eruption: evidence from tree-ring sequences". Radiocarbon. 37 (2): 155–163. doi:10.1017/s0033822200030599.
  31. ^ Schuler, J.; Hreinsdóttir, S.; Illsley‐Kemp, F.; Holden, C.; Townend, J.; Villamor, P. (2024). "The Response of Taupō Volcano to the M7. 8 Kaikōura Earthquake". Journal of Geophysical Research: Solid Earth. 129 (5): e2023JB028585. doi:10.1029/2023JB028585.
  32. ^ Kilgour, Geoff (7 December 2022). "No further unusual activity since the M5.6 earthquake beneath Lake Taupō. Volcanic Alert Level remains at Level 1". GeoNet. New Zealand: GeoNet. Retrieved 7 December 2022.
  33. ^ "GeoNet Volcanic Activity Bulletin". GeoNet. Archived from the original on 20 September 2022. Retrieved 20 September 2022.
  34. ^ "Caldera Unrest Management Sourcebook" (PDF). gns.cri.nz. July 2012. Retrieved 25 April 2024.
  35. ^ a b c "GeoNet volcano data underpins new research of Taupō volcano". GeoNet NZ. Archived from the original on 13 February 2022. Retrieved 13 February 2022.
  36. ^ Gómez-Vasconcelos, Martha; Villamor, Pilar; Procter, Jon; Palmer, Alan; Cronin, Shane; Wallace, Clel; Townsend, Dougal; Leonard, Graham (2018). "Characterisation of faults as earthquake sources from geomorphic data in the Tongariro Volcanic Complex, New Zealand". New Zealand Journal of Geology and Geophysics. 62: 131–142. doi:10.1080/00288306.2018.1548495. S2CID 134094861.
  37. ^ "New Zealand Gazetteer: Horomatangi Reef". LINZ (Toitū Te Whenua). Retrieved 28 March 2023.
  38. ^ Stout, Sir Robert. "Lake Taupo". NZTEC. Retrieved 24 September 2023.
  39. ^ "Hochstetter Centenary". Transactions and Proceedings of the Royal Society of New Zealand. 88. 1960. Retrieved 23 September 2023.
  40. ^ "The southern part of the Province of Auckland showing the routes and surveys by Ferdinand von Hochstetter, 1859 from the original drawings, sketches and measurements by Dr von Hochstetter and the admiralty surveys by Stokes and Drury, compiled by A. Peterman. Gotha, Justus Pertes, 1864". Retrieved 24 September 2023.
  41. ^ a b "The recent volcanic eruptions (preliminary report on), by Dr. Hector [with two plans]". Journals of the House of Representatives. H-25: 1–8. 1886.
  42. ^ Hardcastle, J (1887). "The Tarawera eruption, 10th June, 1886.-A criticism of Professor Hutton's (and others') explanations of the causes of the eruption". Transactions and Proceedings of the Royal Society of New Zealand: 277–282. Retrieved 24 September 2023.
  43. ^ Cussen, Lawrence (1887). Lake Taupo. Wellington, New Zealand: George Didsbury, Government Printer. pp. 1–5. Retrieved 23 September 2023.
  44. ^ Healy, J; Vucetich, CG; Pullar, WA (1964). Stratigraphy and chronology of late Quaternary volcanic ash in Taupo, Rotorua, and Gisborne districts. Vol. 73. Wellington: New Zealand Geological Survey. Bulletin N. S. New Zealand Department of Scientific and Industrial Research. pp. 1–88.
  45. ^ Manville, Vern; Wilson, Colin J. N. (2004). "The 26.5 ka Oruanui eruption, New Zealand: A review of the roles of volcanism and climate in the post-eruptive sedimentary response". New Zealand Journal of Geology and Geophysics. 47 (3): 525–547. doi:10.1080/00288306.2004.9515074.
  46. ^ Rooyakkers, SM; Chambefort, I; Faure, K; Wilson, CJ; Barker, SJ; Mortimer, N; Elms, HC; Troch, J; Charlier, BL; Leonard, GS; Farsky, D (2023). "Absence of low-δ18O magmas despite widespread assimilation of altered crust in a large magmatic and hydrothermal province". Geochimica et Cosmochimica Acta. 355: 195–209. doi:10.1016/j.gca.2023.07.004. S2CID 259512679.: Section: TVZ silicic magma genesis: oxygen isotope perspectives 
edit