Thecamonas trahens is a single-celled eukaryotic organism belonging to the supergroup Opisthokonta and the lineage Apusomonadida, specifically within the high level group Amorphea.[2] Members of this family, known as apusomonads, are gliding heterotrophic protozoan zooflagellates that primarily feed on bacteria and other prokaryotes.[3] Their mode of nutrition and cellular morphology suggests a vital ecological role in microbial predation and nutrient cycling.

Thecamonas trahens
Scientific classification Edit this classification
Domain: Eukaryota
Class: Thecomonadea
Order: Apusomonadida
Family: Apusomonadidae
Genus: Thecamonas
Species:
T. trahens
Binomial name
Thecamonas trahens
Larsen & Patterson, 1990[1]
Synonyms[1]

Amastigonas trahens

Taxonomy

edit

Thecamonas trahens is a species within the family Apusomonadidae, which holds significant evolutionary interest due to its status as a sister taxon to the Opisthokonts—a group that includes animals, fungi, and certain protists.[2]

Ecology

edit

Thecamonas trahens occurs in marine, freshwater, and terrestrial environments. It was initially isolated and cultured from marine benthic sites in tropical regions, suggesting an adaptability to a variety of ecological niches.[4][5] In these environments, Thecamonas trahens primarily thrives by feeding on prokaryotic organisms, contributing to the microbial food web and influencing nutrient cycles. Additionally, Thecamonas trahens possesses genes associated with histidine kinases in cell signaling pathways, animal-like sodium channels, glycolytic mitochondrial metabolism, and calcium signaling—traits linked to the evolution of multicellularity.[6][7][8] The discovery of sodium channel analogs in Thecamonas suggests that voltage-gated Na⁺ channels may have evolved before the divergence of animals and fungi.[9][10] Research on these genes could further illuminate the origins of multicellularity and the evolution of eukaryotes.

References

edit
  1. ^ a b "Taxonomy browser (Thecamonas trahens)". NCBI taxonomy database. Retrieved 2024-12-06.
  2. ^ a b Brown, Matthew W.; Sharpe, Susan C.; Silberman, Jeffrey D.; Heiss, Aaron A.; Lang, B. Franz; Simpson, Alastair G. B.; Roger, Andrew J. (2013-10-22). "Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads". Proceedings of the Royal Society B: Biological Sciences. 280 (1769): 20131755. doi:10.1098/rspb.2013.1755. PMC 3768317. PMID 23986111.
  3. ^ Heiss, Aaron A.; Walker, Giselle; Simpson, Alastair G. B. (2013-09-01). "The Microtubular Cytoskeleton of the Apusomonad Thecamonas, a Sister Lineage to the Opisthokonts". Protist. 164 (5): 598–621. doi:10.1016/j.protis.2013.05.005. ISSN 1434-4610. PMID 23872341.
  4. ^ Larsen, Jacob; Patterson, David J. (1990-08-01). "Some flagellates (Protista) from tropical marine sediments". Journal of Natural History. 24 (4): 801–937. Bibcode:1990JNatH..24..801L. doi:10.1080/00222939000770571. ISSN 0022-2933.
  5. ^ Tikhonenkov, D. V.; Burkovsky, I. V.; Mazei, Yu. A. (2015-09-01). "Is there a relation between the distribution of heterotrophic flagellates and the zonation of a marine intertidal flat?". Oceanology. 55 (5): 711–723. Bibcode:2015Ocgy...55..711T. doi:10.1134/S0001437015050173. ISSN 1531-8508.
  6. ^ Kabbara, Samar; Hérivaux, Anaïs; Dugé de Bernonville, Thomas; Courdavault, Vincent; Clastre, Marc; Gastebois, Amandine; Osman, Marwan; Hamze, Monzer; Cock, J Mark; Schaap, Pauline; Papon, Nicolas (2018-09-25). "Diversity and Evolution of Sensor Histidine Kinases in Eukaryotes". Genome Biology and Evolution. 11 (1): 86–108. doi:10.1093/gbe/evy213. ISSN 1759-6653. PMC 6324907. PMID 30252070.
  7. ^ Cai, Xinjiang; Wang, Xiangbing; Clapham, David E. (October 2014). "Early Evolution of the Eukaryotic Ca2+ Signaling Machinery: Conservation of the CatSper Channel Complex". Molecular Biology and Evolution. 31 (10): 2735–2740. doi:10.1093/molbev/msu218. ISSN 1537-1719. PMC 4169769. PMID 25063443.
  8. ^ Nakayama, Takuro; Ishida, Ken-ichiro; Archibald, John M. (2012-12-20). "Broad Distribution of TPI-GAPDH Fusion Proteins among Eukaryotes: Evidence for Glycolytic Reactions in the Mitochondrion?". PLOS ONE. 7 (12): e52340. Bibcode:2012PLoSO...752340N. doi:10.1371/journal.pone.0052340. ISSN 1932-6203. PMC 3527533. PMID 23284996.
  9. ^ Cai, Xinjiang (2012-02-01). "Ancient Origin of Four-Domain Voltage-gated Na+ Channels Predates the Divergence of Animals and Fungi". The Journal of Membrane Biology. 245 (2): 117–123. doi:10.1007/s00232-012-9415-9. ISSN 1432-1424. PMID 22258316.
  10. ^ Fux, Julia E.; Mehta, Amrit; Moffat, Jack; Spafford, J. David (2018-11-21). "Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations". Frontiers in Physiology. 9: 1406. doi:10.3389/fphys.2018.01406. ISSN 1664-042X. PMC 6259924. PMID 30519187.