Top tree

(Redirected from Top Tree)

A top tree is a data structure based on a binary tree for unrooted dynamic trees that is used mainly for various path-related operations. It allows simple divide-and-conquer algorithms. It has since been augmented to maintain dynamically various properties of a tree such as diameter, center and median.

A top tree is defined for an underlying tree and a set of at most two vertices called as External Boundary Vertices

An image depicting a top tree built on an underlying tree (black nodes). A tree divided into edge clusters and the complete top-tree for it. Filled nodes in the top-tree are path-clusters, while small circle nodes are leaf-clusters. The big circle node is the root. Capital letters denote clusters, non-capital letters are nodes.

Glossary

edit

Boundary Node

edit

See Boundary Vertex

Boundary Vertex

edit

A vertex in a connected subtree is a Boundary Vertex if it is connected to a vertex outside the subtree by an edge.

External Boundary Vertices

edit

Up to a pair of vertices in the top tree   can be called as External Boundary Vertices, they can be thought of as Boundary Vertices of the cluster which represents the entire top tree.

Cluster

edit

A cluster is a connected subtree with at most two Boundary Vertices. The set of Boundary Vertices of a given cluster   is denoted as   With each cluster   the user may associate some meta information   and give methods to maintain it under the various internal operations.

Path Cluster

edit

If   contains at least one edge then   is called a Path Cluster.

Point Cluster

edit

See Leaf Cluster

Leaf Cluster

edit

If   does not contain any edge i.e.   has only one Boundary Vertex then   is called a Leaf Cluster.

Edge Cluster

edit

A Cluster containing a single edge is called an Edge Cluster.

Leaf Edge Cluster
edit

A Leaf in the original Cluster is represented by a Cluster with just a single Boundary Vertex and is called a Leaf Edge Cluster.

Path Edge Cluster
edit

Edge Clusters with two Boundary Nodes are called Path Edge Cluster.

Internal Node

edit

A node in   \   is called an Internal Node of  

Cluster Path

edit

The path between the Boundary Vertices of   is called the cluster path of   and it is denoted by  

Mergeable Clusters

edit

Two Clusters   and   are Mergeable if   is a singleton set (they have exactly one node in common) and   is a Cluster.

Introduction

edit

Top trees are used for maintaining a Dynamic forest (set of trees) under link and cut operations.

The basic idea is to maintain a balanced Binary tree   of logarithmic height in the number of nodes in the original tree  ( i.e. in   time) ; the top tree essentially represents the recursive subdivision of the original tree   into clusters.

In general the tree   may have weight on its edges.

There is a one-to-one correspondence with the edges of the original tree   and the leaf nodes of the top tree   and each internal node of   represents a cluster that is formed due to the union of the clusters that are its children.

The top tree data structure can be initialized in   time.

Therefore the top tree   over (   ) is a binary tree such that

  • The nodes of   are clusters of (    );
  • The leaves of   are the edges of  
  • Sibling clusters are neighbours in the sense that they intersect in a single vertex, and then their parent cluster is their union.
  • Root of   is the tree   itself, with a set of at most two External Boundary Vertices.

A tree with a single vertex has an empty top tree, and one with just an edge is just a single node.

These trees are freely augmentable allowing the user a wide variety of flexibility and productivity without going into the details of the internal workings of the data structure, something which is also referred to as the Black Box.

Dynamic Operations

edit

The following three are the user allowable Forest Updates.

  • Link(v, w): Where   and   are vertices in different trees  1 and  2. It returns a single top tree representing  v  w 
  • Cut(v, w): Removes the edge   from a tree   with top tree   thereby turning it into two trees  v and  w and returning two top trees  v and  w.
  • Expose(S): Is called as a subroutine for implementing most of the queries on a top tree.   contains at most 2 vertices. It makes original external vertices to be normal vertices and makes vertices from   the new External Boundary Vertices of the top tree. If   is nonempty it returns the new Root cluster   with   Expose({v,w}) fails if the vertices are from different trees.

Internal Operations

edit

The Forest updates are all carried out by a sequence of at most   Internal Operations, the sequence of which is computed in further   time. It may happen that during a tree update, a leaf cluster may change to a path cluster and the converse. Updates to top tree are done exclusively by these internal operations.

The   is updated by calling a user defined function associated with each internal operation.

  • Merge  Here   and   are Mergeable Clusters, it returns   as the parent cluster of   and   and with boundary vertices as the boundary vertices of   Computes   using   and  
  • Split  Here   is the root cluster   It updates   and   using   and than it deletes the cluster   from  .

Split is usually implemented using Clean  method which calls user method for updates of   and   using   and updates   such that it's known there is no pending update needed in its children. Than the   is discarded without calling user defined functions. Clean is often required for queries without need to Split. If Split does not use Clean subroutine, and Clean is required, its effect could be achieved with overhead by combining Merge and Split.

The next two functions are analogous to the above two and are used for base clusters.

  • Create  Creates a cluster   for the edge   Sets      is computed from scratch.
  • Eradicate    is the edge cluster   User defined function is called to process   and than the cluster   is deleted from the top tree.
edit

User can define Choose  operation which for a root (nonleaf) cluster selects one of its child clusters. The top tree blackbox provides Search  routine, which organizes Choose queries and reorganization of the top tree (using the Internal operations) such that it locates the only edge in intersection of all selected clusters. Sometimes the search should be limited to a path. There is a variant of nonlocal search for such purposes. If there are two external boundary vertices in the root cluster  , the edge is searched only on the path  . It is sufficient to do following modification: If only one of root cluster children is path cluster, it is selected by default without calling the Choose operation.

edit

Finding i-th edge on longer path from   to   could be done by  =Expose({v,w}) followed by Search( ) with appropriate Choose. To implement the Choose we use global variable representing   and global variable representing   Choose selects the cluster   with   iff length of   is at least  . To support the operation the length must be maintained in the  .

Similar task could be formulated for graph with edges with nonunit lengths. In that case the distance could address an edge or a vertex between two edges. We could define Choose such that the edge leading to the vertex is returned in the latter case. There could be defined update increasing all edge lengths along a path by a constant. In such scenario these updates are done in constant time just in root cluster. Clean is required to distribute the delayed update to the children. The Clean should be called before the Choose is invoked. To maintain length in   would in that case require to maintain unitlength in   as well.

Finding center of tree containing vertex   could be done by finding either bicenter edge or edge with center as one endpoint. The edge could be found by  =Expose({v}) followed by Search( ) with appropriate Choose. The choose selects between children     with   the child with higher maxdistance . To support the operation the maximal distance in the cluster subtree from a boundary vertex should be maintained in the  . That requires maintenance of the cluster path length as well.

Interesting Results and Applications

edit

A number of interesting applications originally implemented by other methods have been easily implemented using the top tree's interface. Some of them include

  • ([SLEATOR AND TARJAN 1983]). We can maintain a dynamic collection of weighted trees in   time per link and cut, supporting queries about the maximum edge weight between any two vertices in   time.
    • Proof outline: It involves maintaining at each node the maximum weight (max_wt) on its cluster path, if it is a point cluster then max_wt( ) is initialised as   When a cluster is a union of two clusters then it is the maximum value of the two merged clusters. If we have to find the max wt between   and   then we do   Expose  and report max_wt 
  • ([SLEATOR AND TARJAN 1983]). In the scenario of the above application we can also add a common weight   to all edges on a given path   · · ·  in   time.
    • Proof outline: We introduce a weight called extra( ) to be added to all the edges in   Which is maintained appropriately ; split( ) requires that, for each path child   of   we set max_wt(A) := max_wt( ) + extra( ) and extra( ) := extra( ) + extra( ). For   := join(   ), we set max_wt( ) := max {max_wt( ), max_wt( )} and extra( ) := 0. Finally, to find the maximum weight on the path   · · ·  we set   := Expose  and return max_wt( ).
  • ([GOLDBERG ET AL. 1991]). We can ask for the maximum weight in the underlying tree containing a given vertex   in   time.
    • Proof outline: This requires maintaining additional information about the maximum weight non cluster path edge in a cluster under the Merge and Split operations.
  • The distance between two vertices   and   can be found in   time as length(Expose ).
    • Proof outline:We will maintain the length length( ) of the cluster path. The length is maintained as the maximum weight except that, if   is created by a join(Merge), length( ) is the sum of lengths stored with its path children.
  • Queries regarding diameter of a tree and its subsequent maintenance takes   time.
  • The Center and Median can me maintained under Link(Merge) and Cut(Split) operations and queried by non local search in   time.
  • Top trees are used in state-of-the-art algorithms for dynamic two-edge connectivity. In this problem, similarly to dynamic connectivity, the graph is subject to edge deletions and insertions, as well as queries asking whether a pair of vertices are two-edge connected, or there is a bridge separating them. Holm, de Lichtenberg, and Thorup[1] give a deterministic algorithm with amortized update time  , and   query time. Subsequent work by Holm, Rotenberg, and Thorup improves this to an amortized update time of  , also using top trees[2][3]
  • The graph could be maintained allowing to update the edge set and ask queries on vertex 2-connectivity. Amortized complexity of updates is  . Queries could be implemented even faster. The algorithm is not trivial,   uses   space.[4]
  • Top trees can be used to compress trees in a way that is never much worse than DAG compression, but may be exponentially better.[5]

Implementation

edit

Top trees have been implemented in a variety of ways, some of them include implementation using a Multilevel Partition (Top-trees and dynamic graph algorithms Jacob Holm and Kristian de Lichtenberg. Technical Report), and even by using Sleator-Tarjan s-t trees (typically with amortized time bounds), Frederickson's Topology Trees (with worst case time bounds) (Alstrup et al. Maintaining Information in Fully Dynamic Trees with Top Trees).

Amortized implementations are more simple, and with small multiplicative factors in time complexity. On the contrary the worst case implementations allow speeding up queries by switching off unneeded info updates during the query (implemented by persistence techniques). After the query is answered the original state of the top tree is used and the query version is discarded.

Using Multilevel Partitioning

edit

Any partitioning of clusters of a tree   can be represented by a Cluster Partition Tree CPT  by replacing each cluster in the tree   by an edge. If we use a strategy P for partitioning   then the CPT would be CPTP  This is done recursively till only one edge remains.

We would notice that all the nodes of the corresponding top tree   are uniquely mapped into the edges of this multilevel partition. There may be some edges in the multilevel partition that do not correspond to any node in the top tree, these are the edges which represent only a single child in the level below it, i.e. a simple cluster. Only the edges that correspond to composite clusters correspond to nodes in the top tree  

A partitioning strategy is important while we partition the Tree   into clusters. Only a careful strategy ensures that we end up in an   height Multilevel Partition ( and therefore the top tree).

  • The number of edges in subsequent levels should decrease by a constant factor.
  • If a lower level is changed by an update then we should be able to update the one immediately above it using at most a constant number of insertions and deletions.

The above partitioning strategy ensures the maintenance of the top tree in   time.

See also

edit

References

edit
  • Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup, Maintaining information in fully dynamic trees with top trees, ACM Transactions on Algorithms (TALG), Vol. 1 (2005), 243–264, doi:10.1145/1103963.1103966
  • Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup, Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, Journal of the ACM, Vol. 48 Issue 4(July 2001), 723–760, doi:10.1145/502090.502095
  • Donald Knuth. The Art of Computer Programming: Fundamental Algorithms, Third Edition. Addison-Wesley, 1997. ISBN 0-201-89683-4 . Section 2.3: Trees, pp. 308–423.
  • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. ISBN 0-262-03293-7 . Section 10.4: Representing rooted trees, pp. 214–217. Chapters 12–14 (Binary Search Trees, Red-Black Trees, Augmenting Data Structures), pp. 253–320.
  1. ^ Holm, J.; De Lichtenberg, K.; Thorup, M. (2001). "Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity". Journal of the ACM. 48 (4): 723. doi:10.1145/502090.502095. S2CID 7273552.
  2. ^ Thorup, Mikkel (2000), "Near-optimal fully-dynamic graph connectivity", Proceedings of the Thirty-Second Annual {ACM} Symposium on Theory of Computing
  3. ^ Holm, Jacob; Rotenberg, Eva; Thorup, Mikkel (2018), "Dynamic Bridge-Finding in   Amortized Time", Proceedings of the Twenty-Ninth Annual {ACM-SIAM} Symposium on Discrete Algorithms, {SODA} 2018, doi:10.1137/1.9781611975031.3, S2CID 33964042
  4. ^ Holm, J.; De Lichtenberg, K.; Thorup, M. (2001). "Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity". Journal of the ACM. 48 (4): 723. doi:10.1145/502090.502095. S2CID 7273552.
  5. ^ Bille, Philip; Gørtz, Inge Li; Landau, Gad M.; Weimann, Oren (2015). "Tree Compression with Top Trees". Inf. Comput. 243: 166–177. arXiv:1304.5702. doi:10.1016/j.ic.2014.12.012.
edit