Twin anemia-polycythemia sequence (TAPS) is a chronic type of unbalanced fetal transfusion in monochorionic twins that results in polycythemia in the TAPS recipient and anemia in the TAPS donor due to tiny placental anastomoses.[1] Post-laser TAPS and spontaneous TAPS are the two forms of TAPS. Unlike twin-to-twin transfusion syndrome, which arises when twin oligohydramnios polyhydramnios sequence (TOPS) is present, TAPS develops in its absence.[2]
Twin anemia-polycythemia sequence | |
---|---|
Other names | TAPS |
Photo of twins legs with twin anemia-polycythemia sequence color difference | |
Specialty | Obstetrics |
Signs and symptoms
editA pale, anemic donor and a plethoric, polycythemic recipient make up the traditional clinical picture of TAPS.[3]
In 29% of spontaneous TAPS twins and 23% of post-laser TAPS twins, severe fetal growth restriction is present.[4][5]
Causes
editThe cause of TAPS is slow and persistent unbalanced feto-fetal transfusion through tiny placental anastomoses, which progressively results in highly discordant hemoglobin levels. This causes the recipient twin to become polycythemic and the donor twin to become anemic.[1]
Mechanism
editThere are very few, tiny arteriovenous vascular anastomoses present in TAPS placentas. This distinct angiography is the foundation of the pathogenesis of TAPS. A slow transfusion of blood from the donor to the recipient is made possible by the few tiny anastomoses, which eventually cause very disparate hemoglobin levels. It's unclear if hormonal dysfunction may also contribute to the onset of TAPS.[6]
Diagnosis
editDoppler ultrasound abnormalities demonstrating an increased peak systolic velocity in the middle cerebral arteries (MCAPSV) in the donor twin and a decreased MCA-PSV in the recipient twin can be used to make an antenatal diagnosis of TAPS. The presence of polycythemia in the recipient and (chronic) anemia in the donor, along with characteristic placental angioarchitecture as determined by injection with colored dye, are the basis for the postnatal diagnosis of TAPS.[6]
Classification
editAntenatal stage | Results of a Doppler ultrasound scan |
---|---|
Stage 1 | MCA-PSV donor >1.5 MoM and MCA-PSV recipient <1.0 MoM, without other signs of fetal compromise |
Stage 2 | MCA-PSV donor >1.7 MoM and MCA-PSV recipient <0.8 MoM, without other signs of fetal compromise |
Stage 3 | As stage 1 or 2, with cardiac compromise of donor, defined as critically abnormal flow.[note 1] |
Stage 4 | Hydrops of donor. |
Stage 5 | Intrauterine demise of one or both fetuses preceded by TAPS |
Postnatal stage | Intertwin hemoglobin difference, g/dl |
---|---|
Stage 1 | >8.0 |
Stage 2 | >11.0 |
Stage 3 | >14.0 |
Stage 4 | >17.0 |
Stage 5 | >20.0 |
Prevention
editThe rate of residual anastomoses can be decreased to prevent postlaser TAPS. The "Solomon technique," an alternate method of laser surgery, may help lower the possibility of omitting a tiny anastomosis during the procedure.[6]
Treatment
editWeekly ultrasound monitoring, which includes a full staging Doppler examination with the MCA-PSV, is part of the expectant management protocol. The recent onset of ultrasound abnormalities may require an increase in the surveillance frequency. When TAPS patients present in the first or early second trimester, this approach is preferred because many of these patients may resolve or remain clinically stable. Expectant care can be continued with the aim of achieving a late preterm delivery in stable cases that do not advance past stage 2. It is necessary to take into account alternate management options if TAPS is accelerating.[7]
Treatments that are temporary include intrauterine blood transfusion of the anemic donor twin or exchange transfusions, which remove blood from the recipient twin and then transfusion of the donor.[8]
Treating TAPS with fetal laser coagulation of vascular anastomoses is the only potentially effective modality.[9]
Outlook
editIn the TAPS Registry cohort, 11% of post-laser TAPS twins and 5% of spontaneous TAPS twins experienced spontaneous fetal death.[5][4]
Epidemiology
editPostlaser TAPS can occur in 2–13% of cases, depending on the definitions and criteria applied.[10][11] The range of incidence for spontaneous TAPS is 3–5%.[6]
See also
editNotes
editReferences
edit- ^ a b Lopriore, E.; Middeldorp, J.M.; Oepkes, D.; Kanhai, H.H.; Walther, F.J.; Vandenbussche, F.P.H.A. (2007). "Twin Anemia–Polycythemia Sequence in Two Monochorionic Twin Pairs Without Oligo-Polyhydramnios Sequence". Placenta. 28 (1). Elsevier BV: 47–51. doi:10.1016/j.placenta.2006.01.010. ISSN 0143-4004. PMID 16516289.
- ^ Tollenaar, L. S. A.; Lopriore, Enrico (2021). "Twin Anemia Polycythemia Sequence". Twin and Higher-order Pregnancies. Cham: Springer International Publishing. pp. 247–262. doi:10.1007/978-3-030-47652-6_16. ISBN 978-3-030-47651-9. S2CID 244850658.
- ^ Tollenaar, Lisanne S.A.; Lopriore, Enrico; Oepkes, Dick; Haak, Monique C.; Klumper, Frans J.C.M.; Middeldorp, Johanna M.; Klink, Jeanine M.M. Van; Slaghekke, Femke (September 10, 2020). "Twin Anemia Polycythemia Sequence: Knowledge and Insights After 15 Years of Research". Maternal-Fetal Medicine. 3 (1). Ovid Technologies (Wolters Kluwer Health): 33–41. doi:10.1097/fm9.0000000000000065. hdl:1887/3270935. ISSN 2641-5895.
- ^ a b Tollenaar, Lisanne S.A.; Lopriore, Enrico; Faiola, Stefano; Lanna, Mariano; Stirnemann, Julien; Ville, Yves; Lewi, Liesbeth; Devlieger, Roland; Weingertner, Anne Sophie; Favre, Romain; Hobson, Sebastian R.; Ryan, Greg; Rodo, Carlota; Arévalo, Silvia; Klaritsch, Philipp; Greimel, Patrick; Hecher, Kurt; de Sousa, Manuela Tavares; Khalil, Asma; Thilaganathan, Basky; Bergh, Eric P.; Papanna, Ramesha; Gardener, Glenn J.; Carlin, Andrew; Bevilacqua, Elisa; Sakalo, Victorya A.; Kostyukov, Kirill V.; Bahtiyar, Mert O.; Wilpers, Abigail; Kilby, Mark D.; Tiblad, Eleonor; Oepkes, Dick; Middeldorp, Johanna M.; Haak, Monique C.; Klumper, Frans J.C.M.; Akkermans, Joost; Slaghekke, Femke (June 5, 2020). "Post-Laser Twin Anemia Polycythemia Sequence: Diagnosis, Management, and Outcome in an International Cohort of 164 Cases". Journal of Clinical Medicine. 9 (6). MDPI AG: 1759. doi:10.3390/jcm9061759. ISSN 2077-0383. PMC 7355738. PMID 32517071.
- ^ a b Tollenaar, Lisanne S.A.; Slaghekke, Femke; Lewi, Liesbeth; Colmant, Claire; Lanna, Mariano; Weingertner, Anne Sophie; Ryan, Greg; Arévalo, Silvia; Klaritsch, Philipp; Tavares de Sousa, Manuela; Khalil, Asma; Papanna, Ramesha; Gardener, Glenn J.; Bevilacqua, Elisa; Kostyukov, Kirill V.; Bahtiyar, Mert O.; Kilby, Mark D.; Tiblad, Eleonor; Oepkes, Dick; Lopriore, Enrico (2021). "Spontaneous twin anemia polycythemia sequence: diagnosis, management, and outcome in an international cohort of 249 cases". American Journal of Obstetrics and Gynecology. 224 (2). Elsevier BV: 213.e1–213.e11. doi:10.1016/j.ajog.2020.07.041. hdl:1887/3270933. ISSN 0002-9378. PMID 32730900.
- ^ a b c d e f g Slaghekke, F.; Kist, W.J.; Oepkes, D.; Pasman, S.A.; Middeldorp, J.M.; Klumper, F.J.; Walther, F.J.; Vandenbussche, F.P.H.A.; Lopriore, E. (2010). "Twin Anemia-Polycythemia Sequence: Diagnostic Criteria, Classification, Perinatal Management and Outcome". Fetal Diagnosis and Therapy. 27 (4). S. Karger AG: 181–190. doi:10.1159/000304512. ISSN 1015-3837. PMID 20339296.
- ^ Baschat, Ahmet A.; Miller, Jena L. (2022). "Pathophysiology, diagnosis, and management of twin anemia polycythemia sequence in monochorionic multiple gestations". Best Practice & Research Clinical Obstetrics & Gynaecology. 84. Elsevier BV: 115–126. doi:10.1016/j.bpobgyn.2022.03.012. ISSN 1521-6934. PMID 35450772. S2CID 260972128.
- ^ Herway, C.; Johnson, A.; Moise, K.; Moise, K. J. (2009). "Fetal intraperitoneal transfusion for iatrogenic twin anemia–polycythemia sequence after laser therapy". Ultrasound in Obstetrics & Gynecology. 33 (5): 592–594. doi:10.1002/uog.6334. ISSN 0960-7692. PMID 19402103.
- ^ Nassr, Ahmed A.; Popek, Edwina J.; Espinoza, Jimmy; Sanz Cortes, Magdalena; Belfort, Michael A.; Shamshirsaz, Alireza A. (2021). "Twin anemia polycythemia sequence: Successful laser photocoagulation treatment and placental histopathological findings". Taiwanese Journal of Obstetrics and Gynecology. 60 (5). Elsevier BV: 916–919. doi:10.1016/j.tjog.2021.07.024. ISSN 1028-4559. PMID 34507674.
- ^ Habli, Mounira; Bombrys, Annette; Lewis, David; Lim, Foong-Yen; Polzin, William; Maxwell, Rose; Crombleholme, Timothy (2009). "Incidence of complications in twin-twin transfusion syndrome after selective fetoscopic laser photocoagulation: a single-center experience". American Journal of Obstetrics and Gynecology. 201 (4). Elsevier BV: 417.e1–417.e7. doi:10.1016/j.ajog.2009.07.046. ISSN 0002-9378. PMID 19788973.
- ^ Robyr, Romaine; Lewi, Liesbeth; Salomon, Laurent J.; Yamamoto, Masami; Bernard, Jean-Pierre; Deprest, Jan; Ville, Yves (2006). "Prevalence and management of late fetal complications following successful selective laser coagulation of chorionic plate anastomoses in twin-to-twin transfusion syndrome". American Journal of Obstetrics and Gynecology. 194 (3). Elsevier BV: 796–803. doi:10.1016/j.ajog.2005.08.069. ISSN 0002-9378. PMID 16522415.
Further reading
edit- Khalil, A.; Gordijn, S.; Ganzevoort, W.; Thilaganathan, B.; Johnson, A.; Baschat, A. A.; Hecher, K.; Reed, K.; Lewi, L.; Deprest, J.; Oepkes, D.; Lopriore, E. (2020). "Consensus diagnostic criteria and monitoring of twin anemia–polycythemia sequence: Delphi procedure". Ultrasound in Obstetrics & Gynecology. 56 (3): 388–394. doi:10.1002/uog.21882. hdl:1887/3185160. ISSN 0960-7692. PMID 31605505.
- Tollenaar, Lisanne S.A.; Prins, Sandra A.; Beuger, Sabine; Slaghekke, Femke; Oepkes, Dick; Lopriore, Enrico (2021). "Twin Anemia Polycythemia Sequence in a Dichorionic Twin Pregnancy Leading to Severe Cerebral Injury in the Recipient". Fetal Diagnosis and Therapy. 48 (4). S. Karger AG: 321–326. doi:10.1159/000514408. hdl:1887/3277471. ISSN 1015-3837. PMID 33774643.