{{ListNav}}
This is a list of googolisms in ascending order.
- This page (the main list) lists the more notable googolisms on each class; click the "More..." link at the end of each section to see more googolisms in that class.
- Googolisms in bold are numbers with peer-reviewed source.
- Googolisms in italics are ill-defined and their placement within this page is reflective of their intended value, assuming them to be well-defined. This list contains ill-defined large numbers, e.g. BEAF numbers beyond tetrational arrays, BIG FOOT, Little Bigeddon, Sasquatch, Oblivion, Utter Oblivion, and large numbers whose well-definedness is not known, e.g. large numbers defined by Taranovsky's ordinal notation and Bashicu matrix number with respect to Bashicu matrix system version 2.3.
Class 0 (0 - 6)
editName | Value | Approximation (Fast-growing hierarchy) |
---|---|---|
Zero | 0 | N/A |
Googolminex | \(10^{-(10^{100})}\) or 1/googolplex | N/A |
Googol-minutia | \(10^{-100}\) or 1/googol | N/A |
One | 1 | f0(0) |
Two | 2 | f0(1) |
Three | 3 | f0(2) |
Four | 4 | f0(3) |
Five | 5 | f0(4) |
Six | 6 | f0(5) |
Class 1 (7 - 1,000,000)
editName | Value | Approximation (Fast-growing hierarchy) |
---|---|---|
Seven | 7 | f0(6) |
Eight | 8 | f0(7) |
Nine | 9 | f0(8) |
Ten | 10 | f1(5) |
Dozen | 12 | f1(6) |
Hundred | 100 (102) | f1(50) |
Eleventy | 110 | f1(55) |
Twelfty (or long hundred) | 120 | f1(60) |
Gross | 144 (122) | f1(72) |
Baker's gross | 169 (132) | f2(5) |
Poulter's gross | 196 (142) | f1(98) |
Short ream | 480 | f2(6) |
Ream | 500 | f2(6) |
Beast number | 666 | f2(7) |
Thousand / Niloogol | 1,000 (103) | f2(7) |
Great gross | 1,728 (123) | f2(8) |
Great Baker's gross | 2,197 (133) | f2(8) |
Poulter's great gross | 2,744 (143) | f2(8) |
Myriad | 10,000 | f2(10) |
Lakh | 100,000 | f2(13) |
Class 2 (1,000,000 - \(10^{1,000,000}\))
editName | Value | Approximation (Fast-growing hierarchy) |
---|---|---|
Million | 1,000,000 | f2(16) |
Crore | 10,000,000 | f2(19) |
Myllion | 100,000,000 | f2(22) |
Billion(S)[1] / Milliard | 1,000,000,000 | f2(25) |
Dialogue | 1010 | f2(29) |
Trillion(S) / Billion(L) | 1012 | f2(35) |
Quadrillion(S) / Billiard | 1015 | f2(45) |
Byllion | 1016 | f2(48) |
Quintillion(S) / Trillion(L) | 1018 | f2(54) |
Guppy | 1020 | f2(61) |
Sextillion(S) / Trilliard | 1021 | f2(64) |
Avogadro's number | 6.02214076*1023 | f2(73) |
Septillion(S) / Quadrillion(L) | 1024 | f2(74) |
Octillion(S) / Quadrilliard | 1027 | f2(83) |
Nonillion(S) / Quintillion(L) | 1030 | f2(93) |
Belphegor's prime | ~1.00000000000007*1030 | f2(93) |
Tryllion | 1032 | f2(100) |
Decillion(S) / Quintilliard | 1033 | f2(103) |
Undecillion(S) / Sextillion(L) | 1036 | f2(113) |
Duodecillion(S) / Sextilliard | 1039 | f2(123) |
Tredecillion(S) / Septillion(L) | 1042 | f2(133) |
Quattuordecillion(S) / Septilliard | 1045 | f2(143) |
Quindecillion(S) / Octillion(L) | 1048 | f2(151) |
Lcillion / Gogol | 1050 | f2(159) |
Sexdecillion(S) / Octilliard | 1051 | f2(162) |
Septendecillion(S) / Nonillion(L) | 1054 | f2(171) |
Octodecillion(S) / Nonilliard | 1057 | f2(182) |
Novemdecillion(S) / Decillion(L) | 1060 | f2(192) |
Vigintillion(S) / Decilliard | 1063 | f2(202) |
Muryoutaisuu | 1068 | f2(219) |
Eddington number | 136*2256 ~ 1.5747724136275*1079 | f2(256) |
Ogol | 1080 | f2(258) |
Trigintillion(S) | 1093 | f2(301) |
Googol | 10100 | f2(323) |
Shannon number | 10120 | f2(390) |
Quadragintillion(S) | 10123 | f2(400) |
Googolex | 12060 ~ 5.6347514353165*10124 | f2(405) |
Quinquagintillion(S) | 10153 | f2(499) |
Trigintillion(L) | 10180 | f2(589) |
Sexagintillion(S) | 10183 | f2(599) |
Number of Planck volumes in the observable universe | ~4.6*10185 | f2(607) |
Gargoogol | 10200 | f2(656) |
Septuagintillion(S) | 10213 | f2(698) |
Hundertime | 4.71193079990*10219 | f2(721) |
Googoc | 200100 ~ 1.2676506002282*10230 | f2(754) |
Quadragintillion(L) | 10240 | f2(787) |
Octogintillion(S) | 10243 | f2(797) |
Nonagintillion(S) | 10273 | f2(897) |
Quinquagintillion(L) | 10300 | f2(996) |
Centillion(S) | 10303 | f2(997) |
Sexagintillion(L) | 10360 | f2(1,185) |
Primo-vigesimo-centillion(S) | 10366 | f2(1,205) |
Faxul | 200! ~ 7.88657867364*10374 | f2(1,235) |
Septuagintillion(L) | 10420 | f2(1,384) |
Octogintillion(L) | 10480 | f2(1,584) |
Googocci | 402201 ~ 2.814729533583*10523 | f2(1,728) |
Nonagintillion(L) | 10540 | f2(1,783) |
Centillion(L) | 10600 | f2(1,982) |
Ducentillion(S) | 10603 | f2(1,992) |
Primo-vigesimo-centillion(L) | 10726 | f2(2,400) |
Trecentillion(S) | 10903 | f2(2,988) |
Googolchime | 101,000 | f2(3,310) |
Quadringentillion(S) | 101,203 | f2(3,984) |
Quingentillion(S) | 101,503 | f2(4,981) |
Sescentillion(S) | 101,803 | f2(5,977) |
Septingentillion(S) | 102,103 | f2(6,973) |
Octingentillion(S) | 102,403 | f2(7,970) |
Nongentillion(S) | 102,703 | f2(8,966) |
Millillion(S) | 103,003 | f2(9,962) |
Decyllion | 104,096 | f2(13,592) |
Millillion(L) | 106,000 | f2(19,917) |
Googoltoll | 1010,000 | f2(33,204) |
Myrillion/Decimillillion(S) | 1030,003 | f2(99,650) |
Hitchhiker's number | 2267,709 ~ 2.748585232104986*1080,588 | f2(f2(14)) |
Googolgong | 10100,000 | f2(f2(15)) |
Centimillillion(S) | 10300,003 | f2(f2(16)) |
Class 3 (\(10^{1,000,000} - 10^{10^{1,000,000}}\))
editName | Value | Approximation (fast-growing hierarchy) |
---|---|---|
Maximusmillion | 101,000,000 | f2(f2(17)) |
Milli-millillion(S) | 103,000,003 | f2(f2(19)) |
Vigintyllion | 104,194,304 | f2(f2(19)) |
Milli-millillion(L) | 106,000,000 | f2(f2(20)) |
Largest known prime | 282,589,933-1 ~ 1.488944*1024,862,047 | f2(f2(22)) |
Nanillion | 103,000,000,003 | f2(f2(28)) |
Trialogue | 101010 | f2(f2(30)) |
Ballium's number | ~ 2.03542*10138,732,019,349 | f2(f2(33)) |
Picillion | 103*1012+3 | f2(f2(37)) |
Nirabhilapya nirabhilapya parivarta | \(10^{7 \times 2^{122}}\) | f2(f2(37)) |
Femtillion | 103*1015+3 | f2(f2(48)) |
Attillion | 103*1018+3 | f2(f2(57)) |
Guppyplex | 101020 | f2(f2(63)) |
Zeptillion | 103*1021+3 | f2(f2(67)) |
Yoctillion | 103*1024+3 | f2(f2(76)) |
Xonillion | 103*1027+3 | f2(f2(86)) |
Vecillion | 103*1030+3 | f2(f2(96)) |
Mecillion | 103*1033+3 | f2(f2(106)) |
Duecillion | 103*1036+3 | f2(f2(116)) |
Trecillion | 103*1039+3 | f2(f2(125)) |
Tetrecillion | 103*1042+3 | f2(f2(135)) |
Icosillion | 103*1060+3 | f2(f2(195)) |
Doppelgängion | 101068 | f2(f2(220)) |
Triacontillion | 103*1090+3 | f2(f2(294)) |
Googolplex | 1010100 | f2(f2(325)) |
Gargoogolplex | googolplex2 = 102*10100 | f2(f2(326)) |
Googolbang | (10100)! ~ 109.957*10101 | f2(f2(332)) |
Tetracontillion | 103*10120+3 | f2(f2(393)) |
Pentacontillion | 103*10150+3 | f2(f2(492)) |
Hexacontillion | 103*10180+3 | f2(f2(592)) |
Heptacontillion | 103*10210+3 | f2(f2(691)) |
Octacontillion | 103*10240+3 | f2(f2(791)) |
Ennacontillion | 103*10270+3 | f2(f2(890)) |
Hectillion | 103*10300+3 | f2(f2(989)) |
Ecetonplex | 1010303 | f2(f2(998)) |
Kilofaxul | (200!)! ~ 1010379 | f2(f2(1245)) |
Dohectillion | 103*10600+3 | f2(f2(1985)) |
Triahectillion | 103*10900+3 | f2(f2(2981)) |
Googolplexichime | 10101,000 | f2(f2(3311)) |
Tetrahectillion | 103*101,200+3 | f2(f2(3977)) |
Killillion | 103*103,000+3 | f2(f2(9955)) |
Vecekillillion | 103*1030,000+3 | f2(f2(f2(13))) |
Googolplexigong | 1010100,000 | f2(f2(f2(14))) |
Hectekillillion | 103*10300,000+3 | f2(f2(f2(16))) |
Class 4 (\(10^{10^{1,000,000}}\) - \(10^{10^{10^{10^{1,000,000}}}}\))
editName | Value | Approximation (fast-growing hierarchy) |
---|---|---|
Millionduplex | 10101,000,000 | f23(17) |
Megillion | 103*103,000,000+3 | f23(21) |
Gigillion | 103*103,000,000,000+3 | f23(32) |
Tetralogue | 10101010 | f23(35) |
Terillion | 103*103*1012+3 | f23(37) |
Petillion | 103*103*1015+3 | f23(47) |
Exillion | 103*103*1018+3 | f23(57) |
Zettillion | 103*103*1021+3 | f23(67) |
Yottillion | 103*103*1024+3 | f23(76) |
Xennillion | 103*103*1027+3 | f23(86) |
Dakillion | 103*103*1030+3 | f23(96) |
Hendillion | 103*103*1033+3 | f23(106) |
First Skewes' number | eee79 ~ 10101034 | f23(108) |
Dokillion | 103*103*1036+3 | f23(116) |
Tradakillion | 103*103*1039+3 | f23(126) |
Tedakillion | 103*103*1042+3 | f23(134) |
Ikillion | 103*103*1060+3 | f23(195) |
Trakillion | 103*103*1090+3 | f23(294) |
Googolduplex | 101010100 | f23(324) |
Fzgoogolplex | (1010100)1010100 = 101010100+100 | f23(326) |
Tekillion | 103*103*10120+3 | f23(393) |
Hotillion | 103*103*10300+3 | f23(990) |
Ecetonduplex | 101010303 | f23(998) |
Megafaxul | ((200!)!)! ~ 101010379 | f23(1235) |
Botillion | 103*103*10600+3 | f23(1986) |
Trotillion | 103*103*10900+3 | f23(2982) |
Second Skewes number | eeee7.705 ~ 101010963 | f23(3189) |
Totillion | 103*103*101,200+3 | f23(3978) |
Kalillion | 103*103*103,000+3 | f23(9956) |
Dalillion | 103*103*106,000+3 | f23(19921) |
Tralillion | 103*103*109,000+3 | f23(29886) |
Talillion | 103*103*1012,000+3 | f23(39851) |
Dakalillion | 103*103*1030,000+3 | f23(99645) |
Googolduplexigong | 101010100,000 | f24(14) |
Hotalillion | 103*103*10300,000+3 | f24(16) |
Class 5 (\(10^{10^{10^{10^6}}}\) - \(10^{10^{10^{10^{10^6}}}}\))
editName | Value | Approximation (fast-growing hierarchy) |
---|---|---|
Millitriplexion | 1010101,000,000 | f24(16) |
Mejillion | 103*103*103,000,000+3 | f24(19) |
Gijillion | 103*103*10300,000,0000+3 | f24(28) |
Pentalogue | 1010101010 | f24(30) |
Astillion | 103*103*103*1012+3 | f24(38) |
Lunillion | 103*103*103*1015+3 | f24(47) |
Fermillion | 103*103*103*1018+3 | f24(57) |
Glocillion | 103*103*103*1030+3 | f24(96) |
Multillion | 103*103*103*1042+3 | f24(136) |
Metillion | 103*103*103*1045+3 | f24(146) |
Googoltriplex | 10101010100 | f24(326) |
Fzgargoogolplex | googolduplexgoogolduplex | f24(326) |
Ecetontriplex | 10101010303 | f24(998) |
Gigafaxul | (((200!)!)!)! ~ 10101010379 | f24(1242) |
Googoltriplexigong | 10101010100,000 | f25(14) |
Tetration level (\(10^{10^{10^{10^{10^6}}}}\) - \(10 \uparrow\uparrow\uparrow 3\))
editName | Value |
---|---|
Hexalogue | 10↑↑6 |
Googolquadruplex | E100#5 |
Fzgargantugoogolplex | googoltriplexgoogoltriplex |
Heptalogue | 10↑↑7 |
Googolquinplex | E100#6 |
Octalogue | 10↑↑8 |
Googolsextiplex | E100#7 |
Ennalogue | 10↑↑9 |
Bentley's Number | \(\sum^{9}_{i = 0} 10 \uparrow\uparrow i\) |
Googolseptiplex | E100#8 |
Decker | {10,10,2} = 10↑↑10 |
Googoloctiplex | E100#9 |
Endekalogue / Equinoxal | 10↑↑11 = 10(≡) = 10(10)(10) |
Googolnoniplex | E100#10 |
Dodekalogue | 10↑↑12 |
Googoldeciplex | E100#11 |
Triadekalogue | 10↑↑13 |
Tetradekalogue | 10↑↑14 |
Giggol | {10,100,2} = 10↑↑100 |
Grangol | E100#100 |
Expofaxul | 200!1 |
Mega | 2[5] = 256[4] ~ 10↑↑258 |
Chilialogue | 10↑↑1,000 |
Myrialogue | 10↑↑10,000 |
Grangolgong | E100,000#100,000 |
Tritri | {3,3,3} = {3,7625597484987,2} = 3↑↑7,625,597,484,987 |
Googol-stack | 10↑↑(10100) |
Googoldex | E100#(10100) = E100#1#2 |
Jaghanya Parīta Asaṃkhyāta | ~ 10↑↑10136 |
Ecetondex | E303#1#2 |
Grand Faxul | ~ 10↑↑10379 |
Zootzootplex | Exponential factorial of googolplex = googolplexgoogolplex-1googolplex-2...432. |
Googolplexstack | 10↑↑(1010100) |
Googolplexidex | E100#(1010100) = E100#2#2 |
Grand Kilofaxul | ~ 10↑↑1010379 |
Up-arrow notation level (\(10 \uparrow\uparrow\uparrow 3\) - \(f_\omega(f_3(10))\))
editName | Value |
---|---|
Tria-taxis | E1#1#3 = 10↑↑↑3 = 10↑↑10↑↑10 |
Equiduoxal | 10(≡≡) = 10(10(≡))(10(≡)) |
Giggolplex | {10,giggol,2} = 10↑↑10↑↑100 |
Grangoldex | E100#100#2 |
Kiloexpofaxul | (200!1)!1 |
Grangoldexigong | E100,000#100,000#2 |
Googolgoogolduplex | 10↑↑10↑↑(10100) |
Ecetondudex | E303#1#3 |
Bigrand Faxul | ~ 10↑↑10↑↑(10379) |
Tetra-taxis | E1#1#4 = 10↑↑↑4 |
Giggolduplex | {10,giggolplex,2} = 10↑↑10↑↑10↑↑100 |
Grangoldudex | E100#100#3 |
Megaexpofaxul | ((200!1)!1)!1 |
Grangoldudexigong | E100,000#100,000#3 |
Googolgoogoltriplex | 10↑↑10↑↑10↑↑(10100) |
Grangoltridex | E100#100#4 |
{{fancyK}} (fancy K) | 10↑↑↑10 |
Megiston | 10[5] ~ 10↑↑↑11 |
Gaggol | {10,100,3} = 10↑↑↑100 |
Greagol | E100#100#100 |
Tetrofaxul | 200!2 |
Greagolgong | E100,000#100,000#100,000 |
Googol-3-flex | 10↑↑↑(10100) |
Ecetonthrex | E303#1#1#2 |
Folkman's number | 2↑↑↑(2901) |
Grand expofaxul | ~ 10↑↑↑10↑↑198 |
A-ooga | 2[6] |
Grahal | g1 = 3↑↑↑↑3 |
Super K | 10↑↑↑↑3 |
Gaggolplex | {10,gaggol,3} |
Greagolthrex | E100#100#100#2 |
Kilotetrofaxul | (200!2)!2 |
Greagolthrexigong | E100,000#100,000#100,000#2 |
Ecetonduthrex | E303#1#1#3 |
Tritet | {4,4,4} = 4↑↑↑↑4 |
Greagolduthrex | E100#100#100#3 |
Greagolduthrexigong | E100,000#100,000#100,000#3 |
Equitrioxal | 10(≡≡≡) = 10(10(≡≡))(10(≡≡)) |
Hexar | \(Q_{1,0}(6)\) = 6↑↑↑↑6 |
Deka-petaxis | {10,10,4} = 10↑↑↑↑10 |
Geegol | {10,100,4} = 10↑↑↑↑100 |
Gigangol | E100#100#100#100 |
Pentofaxul | 200!3 |
Geegolplex | {10,geegol,4} |
Gigangoltetrex | E100#100#100#100#2 |
Gigangoldutetrex | E100#100#100#100#3 |
Tripent | {5,5,5} = 5↑↑↑↑↑5 |
Deka-exaxis | 10↑↑↑↑↑10 |
Gigol | {10,100,5} = 10↑↑↑↑↑100 |
Gorgegol | E100#100#100#100#100 |
Hexofaxul | 200!4 |
Gigolplex | {10,gigol,5} |
Gorgegolpentex | E100#100#100#100#100#2 |
Goggol | {10,100,6}= 10↑↑↑↑↑↑100 |
Gulgol | E100#100#100#100#100#100 |
Goggolplex | {10,goggol,6} |
Gulgolhex | E100#100#100#100#100#100#2 |
Trisept | {7,7,7} = 7↑77 |
Gagol | {10,100,7} = 10↑7100 |
Gaspgol | E100#100#100#100#100#100#100 |
Gagolplex | {10,gagol,7} |
Gaspgolheptex | E100#100#100#100#100#100#100#2 |
Ginorgol | E100#100#100#100#100#100#100#100 |
Ginorgoloctex | E100#100#100#100#100#100#100#100#2 |
Gargantuul | E100##9 |
Tridecal | {10,10,10} |
Googondol | E100##10 |
Boogol | {10,10,100} |
Gugold | E100##100 |
Hyperfaxul | 200![1] |
Gugoldagong | E100,000##100,000 |
Gongol | hyper(10,10100,100) |
Googoldiflux | 10↑10^10010^100 |
Equiquinoxal | 10(≡{≡}≡) |
\(q(6)\) (lower bound) |
Linear omega level (\(f_\omega(f_3(10))\) - \(f_{\omega^2}(f_3(10))\))
editName | Value |
---|---|
Moser | 2[2[5]] using Steinhaus-Moser notation, ~ 3 ↑Mega 3 |
Boogolplex | {10,10,{10,10,100}} |
Gugolda-suplex | E100##100#2 |
Kilohyperfaxul | (200![1])![1] |
Gongolplex | hyper(10,gongol,100) |
Dihexar | \(Q_{1,1}(6) \approx 6\rightarrow 6\rightarrow 6\rightarrow 2\) |
Little Graham | |
Graham's number | g64, where g1 = 3 ↑4 3 and gn = 3 ↑gn-1 3, ~ {3,65,1,2} |
xkcd number | A(G,G), where G is Graham's number, ~ {3,66,1,2} |
Corporal | {10,100,1,2} |
Graatagold | E100##100#100 |
Forcal | g1,000,000 |
Conway's Tetratri | 3→3→3→3 ~ {33,3,2,2} |
Corporalplex | {10,{10,100,1,2},1,2} |
Graatagolda-sudex | E100##100#100#2 |
Force forcal | gforcal |
Trihexar | \(Q_{1,2}(6)\) |
Greegold | E100##100#100#100 |
Suporcal | Forcal(1,000,000) |
Greegolda-suthrex | E100##100#100#100#2 |
Grinningold | E100##100#100#100#100 |
Megocal | Forcal2(1,000,000) |
Golaagold | E100##100##5 |
Gruelohgold | E100##100##6 |
Gaspgold | E100##100##7 |
Ginorgold | E100##100##8 |
Grand tridecal | {10,10,10,2} |
Gugolthra | E100##100##100 |
Biggol | {10,10,100,2} |
Giaxul | 200![200] = 200![1,2] |
Ultron | \(\approx f_{\omega+200} (100)\) |
Terribocal | Forcal1,2(1) |
Biggolplex | {10,10,{10,10,100,2},2} |
Graatagolthra | E100##100##100#100 |
Greegolthra | E100##100##100#100#100 |
Tetratri | {3,3,3,3} |
Septasexahexar | \(Q_{3,0}(6)\) |
Gugoltesla | E100##100##100##100 |
Baggol | {10,10,100,3} |
Tribocal | Forcal1,3(1) |
Baggolplex | {10,10,{10,10,100,3},3} |
Graatagoltesla | E100##100##100##100#100 |
Supertet | {4,4,4,4} |
Gugolpeta | E100##100##100##100##100 |
Beegol | {10,10,100,4} |
Beegolplex | {10,10,{10,10,100,4},4} |
Gugolhexa | E100###6 |
Bigol | {10,10,100,5} |
Gugolhepta | E100###7 |
Boggol | {10,10,100,6} |
Gugolocta | E100###8 |
Bagol | {10,10,100,7} |
General | {10,10,10,10} |
Kaboodol | \(\underbrace{10 \rightarrow\ldots\rightarrow 10}_{102} < \text{kaboodol} < \underbrace{10 \rightarrow\ldots\rightarrow 10}_{103}\) |
Throogol | E100###100 |
Troogol | {10,10,10,100} |
Giabixul | 200![200,200] |
Quadratic omega level (\(f_{\omega^2}(f_3(10))\) - \(f_{\omega^3}(f_3(10))\))
editName | Value |
---|---|
Generalplex | {10,10,10,{10,10,10,10}} = {10,3,1,1,2} |
Kaboodolplex | \(\underbrace{10 \rightarrow\ldots\rightarrow 10}_{\text{kaboodol}+2} < \text{kaboodolplex} < \underbrace{10 \rightarrow\ldots\rightarrow 10}_{\text{kaboodol}+3}\) |
Troogolplex | {10,10,10,{10,10,10,100}} |
Thrangol | E100###100#100 |
BOX_M̃ | |
Threagol | E100###100#100#100 |
Thrugold | E100###100##100 |
Thrugolthra | E100###100##100##100 |
Thrugoltesla | E100###100##100##100##100 |
Throotrigol | E100###100###100 |
Triggol | {10,10,10,100,2} |
Triggolplex | {10,10,10,{10,10,10,100,2},2} |
Thrantrigol | E100###100###100#100 |
Thrutrigold | E100###100###100##100 |
Pentatri | {3,3,3,3,3} |
Throotergol | E100###100###100###100 |
Traggol | {10,10,10,100,3} |
Throopetol | E100###100###100###100###100 |
Treegol | {10,10,10,100,4} |
Superpent | {5,5,5,5,5} |
Throohexol | E100####6 |
Trigol | {10,10,10,100,5} |
Throoheptgol | E100####7 |
Troggol | {10,10,10,100,6} |
Throogogdol | E100####8 |
Tragol | {10,10,10,100,7} |
Pentadecal | {10,10,10,10,10} |
Tetroogol | E100####100 |
Quadroogol | {10,10,10,10,100} |
Polynomial omega level (\(f_{\omega^3}(f_3(10))\) - \(f_{\omega^\omega}(f_3(10))\))
editName | Value |
---|---|
Pentadecalplex | {10,10,10,10,{10,10,10,10,10}} |
Quadroogolplex | {10,10,10,10,{10,10,10,10,100}} |
Tetrangol | E100####100#100 |
Tetrugold | E100####100##100 |
Tetrithroogol | E100####100###100 |
Tetrootrigol | E100####100####100 |
Quadriggol | {10,10,10,10,100,2} |
Hexatri | {3,3,3,3,3,3} |
Tetrootergol | E100####100####100####100 |
Quadraggol | {10,10,10,10,100,3} |
Tetroopetol | E100####100####100####100####100 |
Quadreegol | {10,10,10,10,100,4} |
Tetroohexol | E100#####6 |
Quadrigol | {10,10,10,10,100,5} |
Superhex | {6,6,6,6,6,6} |
Tetrooheptgol | E100#####7 |
Quadroggol | {10,10,10,10,100,6} |
Tetroogogdol | E100#####8 |
Quadragol | {10,10,10,10,100,7} |
Hexadecal | {10,10,10,10,10,10} |
Pentoogol | E100#####100 |
Quintoogol | {10,10,10,10,10,100} |
Pentootrigol | E100#####100#####100 |
Quintiggol | {10,10,10,10,10,100,2} |
Pentootergol | E100#####100#####100#####100 |
Quintaggol | {10,10,10,10,10,100,3} |
Quinteegol | {10,10,10,10,10,100,4} |
Quintigol | {10,10,10,10,10,100,5} |
Supersept | {7,7,7,7,7,7,7} |
Heptadecal | {10,10,10,10,10,10,10} |
Hexoogol | E100######100 |
Sextoogol | {10,10,10,10,10,10,100} |
Superoct | {8,8,8,8,8,8,8,8} |
Octadecal | {10,10,10,10,10,10,10,10} |
Heptoogol | E100#######100 |
Septoogol | {10,10,10,10,10,10,10,100} |
Superenn | {9,9,9,9,9,9,9,9,9} |
Ennadecal | {10,10,10,10,10,10,10,10,10} |
Ogdoogol | E100########100 |
Octoogol | {10,10,10,10,10,10,10,10,100} |
Iteral | {10,10,10,10,10,10,10,10,10,10} = {10,10 (1) 2} = {10,2,2 (1) 2} |
Entoogol | E100#########100 |
Dektoogol | E100##########100 |
Ultatri | {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3} = {3,27 (1) 2} |
Goobol | {10,100(1)2} |
Godgahlah | E100#100100 = E100#^#100 |
Giatrixul | 200![200,200,200] |
Godgahlahgong | E100,000#100,000100,000 |
Exponentiated linear omega level (\(f_{\omega^\omega}(f_3(10))\) - \(f_{\omega^{\omega^2}}(f_3(10))\))
editName | Value |
---|---|
Dupertri | {3,{3,3,3}(1)2} = {3,3,2 (1) 2} |
Duperdecal | {10,{10,10(1)2}(1)2} |
Goobolplex | {10,{10,100(1)2}(1)2} |
Grand godgahlah | E100#godgahlah100 = E100#^#100#2 |
Grand godgahlahgong | E100,000#godgahlahgong100,000 |
Grand grand godgahlah | E100#^#100#3 |
Gibbol | {10,100,2(1)2} |
Grandgahlah | E100#^#100#100 |
Latri | {3,3,3(1)2} |
Gabbol | {10,100,3(1)2} |
Greagahlah | E100#^#100#100#100 |
Boobol | {10,10,100(1)2} |
Gugoldgahlah | E100#^#100##100 |
Bibbol | {10,10,100,2(1)2} |
Gugolthragahlah | E100#^#100##100##100 |
Troobol | {10,10,10,100(1)2} |
Throogahlah | E100#^#100###100 |
Quadroobol | {10,10,10,10,100(1)2} |
Tetroogahlah | E100#^#100####100 |
Gootrol | {10,100(1)3} |
Gotrigahlah | E100#^#100#^#100 |
Bootrol | {10,10,100(1)3} |
Gooquadrol | {10,100(1)4} |
Gotergahlah | E100#^#100#^#100#^#100 |
Emperal | {10,10(1)10} |
Gossol | {10,10(1)100} |
Godgoldgahlah | E100#^#*#100 |
Emperalplex | {10,10(1){10,10(1)10}} |
Gossolplex | {10,10(1){10,10(1)100}} |
Gotrigoldgahlah | E100#^#*#100#^#*#100 |
Gissol | {10,10(1)100,2} |
Gassol | {10,10(1)100,3} |
Hyperal | {10,10(1)10,10} |
Fish number 3 | \(F_3^{63}(3)\) |
Mossol | {10,10(1)10,100} |
Godthroogahlah | E100#^#*##100 |
Mossolplex | {10,10(1)10,{10,10(1)10,100}} |
Bossol | {10,10(1)10,10,100} |
Godtetroogahlah | E100#^#*###100 |
Trossol | {10,10(1)10,10,10,100} |
Godpentoogahlah | E100#^#*####100 |
Quadrossol | {10,10(1)10,10,10,10,100} |
Quintossol | {10,10(1)10,10,10,10,10,100} |
Diteral | {10,10 (1)(1) 2} |
Dubol | {10,100 (1)(1) 2} |
Deutero-godgahlah | E100#^#*#^#100 |
Diteralplex | {10,diteral (1)(1) 2} |
Dutrol | {10,100 (1)(1) 3} |
Duquadrol | {10,100 (1)(1) 4} |
Admiral | {10,10 (1)(1) 10} |
Dossol | {10,10 (1)(1) 100} |
Deutero-godgoldgahlah | E100#^#*#^#*#100 |
Dossolplex | {10,10 (1)(1) dossol} |
Dutritri | {3,3,3 (1) 3,3,3 (1) 3,3,3} |
Dutridecal | {10,10,10 (1) 10,10,10 (1) 10,10,10} |
Trito-godgahlah | E100#^#*#^#*#^#100 |
Teterto-godgahlah | E100#^#*#^#*#^#*#^#100 |
Pepto-godgahlah | E100#^##5 |
Exto-godgahlah | E100#^##6 |
Epto-godgahlah | E100#^##7 |
Ogdo-godgahlah | E100#^##8 |
Xappol | {10,10 (2) 2} |
Goxxol | {10,100 (2) 2} |
Gridgahlah | E100#^##100 |
Exponentiated polynomial omega level (\(f_{\omega^{\omega^2}}(f_3(10))\) - \(f_{\omega^{\omega^\omega}}(f_3(10))\))
editName | Number |
---|---|
Xappolplex | {10,xappol (2) 2} |
Grand gridgahlah | E100#^##100#2 |
Grand xappol | {10,10 (2) 3} |
Gridtrigahlah | E100#^##100#^##100 |
Deutero-gridgahlah | E100#^##*#^##100 |
Dimentri | {3,3 (3) 2} |
Trito-gridgahlah | E100#^##*#^##*#^##100 |
Teterto-gridgahlah | E100#^##*#^##*#^##*#^##100 |
Colossol | {10,10 (3) 2} |
Kubikahlah | E100#^###100 |
Colossolplex | {10,colossol (3) 2} |
Deutero-kubikahlah | E100#^###*#^###100 |
Trito-kubikahlah | E100#^###*#^###*#^###100 |
Terossol | {10,10 (4) 2} |
Quarticahlah | E100#^####100 |
Terossolplex | {10,terossol (4) 2} |
Deutero-quarticahlah | E100#^####*#^####100 |
Petossol | {10,10 (5) 2} |
Quinticahlah | E100#^#####100 |
Petossolplex | {10,petossol (5) 2} |
Ectossol | {10,10 (6) 2} |
Sexticahlah | E100#^######100 |
Ectossolplex | {10,ectossol (6) 2} |
Zettossol | {10,10 (7) 2} |
Septicahlah | E100#^#######100 |
Zettossolplex | {10,zettossol (7) 2} |
Yottossol | {10,10 (8) 2} |
Octicahlah | E100#^########100 |
Yottossolplex | {10,yottossol (8) 2} |
Nonicahlah | E100#^#^#9 |
Xennossol | {10,10 (9) 2} |
Xennossolplex | {10,xennossol (9) 2} |
Dimendecal | {10,10 (10) 2} |
Decicahlah | E100#^#^#10 |
Gongulus | {10,10 (100) 2} |
Godgathor | E100#^#^#100 |
Double exponentiated polynomial omega level (\(f_{\omega^{\omega^\omega}}(f_3(10))\) - \(f_{\omega^{\omega^{\omega^\omega}}}(f_3(10))\))
editName | Value |
---|---|
Gongulusplex | {10,10 (gongulus) 2} |
Grand godgathor | E100#^#^#100#2 |
Gongulusduplex | {10,10 (gongulusplex) 2} |
Gotrigathor | E100#^#^#100#^#^#100 |
Deutero-godgathor | E100#^#^#*#^#^#100 |
Trito-godgathor | E100#^#^#*#^#^#*#^#^#100 |
Hecato-godgathor | E100#^(#^#*#)100 |
Godgridgathor | E100#^(#^#*##)100 |
Dulatri | {3,3 (0,2) 2} |
Godkubikgathor | E100#^(#^#*###)100 |
Gingulus | {10,100 (0,2) 2} |
Godgathordeus | E100#^(#^#*#^#)100 |
Trilatri | {3,3 (0,3) 2} |
Gangulus | {10,100 (0,3) 2} |
Godgathortruce | E100#^(#^#*#^#*#^#)100 |
Geengulus | {10,100 (0,4) 2} |
Godgathorquad | E100#^(#^#*#^#*#^#*#^#)100 |
Gowngulus | {10,100 (0,5) 2} |
Godgathorquid | E100#^#^##5 |
Gungulus | {10,100 (0,6) 2} |
Godgathorsid | E100#^#^##6 |
Bongulus | {10,100 (0,0,1) 2} |
Gralgathor | E100#^#^##100 |
Bingulus | {10,100 (0,0,2) 2} |
Gralgathordeus | E100#^(#^##*#^##)100 |
Trimentri | {3,3 (0,0,0,1) 2} = {3,3 ((1)1) 2} |
Bangulus | {10,100 (0,0,3) 2} |
Gralgathortruce | E100#^(#^##*#^##*#^##)100 |
Beengulus | {10,100 (0,0,4) 2} |
Trongulus | {10,100 (0,0,0,1) 2} |
Thraelgathor | E100#^#^###100 |
Thraelgathordeus | E100#^(#^###*#^###)100 |
Quadrongulus | {10,100 (0,0,0,0,1) 2} |
Terinngathor | E100#^#^####100 |
Pentaelgathor | E100#^#^#####100 |
Hexaelgathor | E100#^#^######100 |
Heptaelgathor | E100#^#^#######100 |
Octaelgathor | E100#^#^########100 |
Goplexulus | \(\lbrace10,100 (\underbrace{0,0,\ldots ,0,0,}_{100 \text{ zeroes}}1) 2\rbrace\) = {10,100 ((1)1) 2} |
Godtothol | E100#^#^#^#100 |
Triple exponentiated polynomial omega level (\(f_{\omega^{\omega^{\omega^\omega}}}(f_3(10))\) - \(f_{\omega^{\omega^{\omega^{\omega^\omega}}}}(f_3(10))\))
editName | Value |
---|---|
Godtotholdeus | E100#^(#^#^#*#^#^#)100 |
Godtotholcentice | E100#^#^(#^#*#)100 |
Hyper-godgathordeuterfact | E100#^#^(#^#*##)100 |
Hyper-godgathordeus | E100#^#^(#^#*#^#)100 |
Extendol | s(3,3{1`2}2) |
Hyper-godgathortruce | E100#^#^(#^#*#^#*#^#)100 |
Graltothol | E100#^#^#^##100 |
Hyper-gralgathordeus | E100#^#^(#^##*#^##)100 |
Thraeltothol | E100#^#^#^###100 |
Terinntothol | E100#^#^#^####100 |
Pentaeltothol | E100#^#^#^#####100 |
Goduplexulus | {10,100 ((100)1) 2} = {10,100 ((0,1)1) 2} |
Godtertol | E100#^#^#^#^#100 |
Iterated Cantor normal form level (\(f_{\omega^{\omega^{\omega^{\omega^\omega}}}}(f_3(10))\) - \(f_{\varepsilon_0}^2(10)\))
editName | Value |
---|---|
Hyper-hyper-godgathordeus | E100#^#^#^(#^#*#^#)100 |
Graltertol | E100#^#^#^#^##100 |
Thraeltertol | E100#^#^#^#^###100 |
Gotriplexulus | \(\lbrace 10,100 ((\underbrace{0,0,\ldots ,0,0,}_{100 \text{ zeroes}}1)1) 2\rbrace\) = {10,100 (((1)1)1) 2} |
Godtopol | E100#^#^#^#^#^#100 |
Graltopol | E100#^#^#^#^#^##100 |
Godhathor | E100#^#^#^#^#^#^#100 |
Godheptol | E100#^#^#^#^#^#^#^#100 |
Godoctol | E100#^#^#^#^#^#^#^#^#100 |
Godentol | E100#^#^#^#^#^#^#^#^#^#100 |
Goddekathol | E100#^#^#^#^#^#^#^#^#^#^#100 |
Tethrathoth | E100#^^#100 |
Goppatoth | 10↑↑100 & 10 |
Nucleaxul | 200![200200] |
Giaquaxul | 200![200,200,200,200] |
Epsilon level (\(f_{\varphi(1,0)}^2(10)\) aka \(f_{\varepsilon_0}^2(10)\) - \(f_{\varphi(2,0)}^2(10)\) aka \(f_{\zeta_0}^2(10)\))
editName | Value |
---|---|
Grand tethrathoth | E100#^^#100#2 |
Goppatothplex | 10↑↑(goppatoth) & 10 |
Grantethrathoth | E100#^^#100#100 |
Gugolda-carta-tethrathoth | E100#^^#100##100 |
Godgahlah-carta-tethrathoth | E100#^^#100#^#100 |
Tethratrithoth | E100#^^#100#^^#100 |
Tethraterthoth | E100#^^#100#^^#100#^^#100 |
Tethrathoth-by-hyperion | E100#^^#*#100 |
Tethrathoth-by-godgahlah | E100#^^#*#^#100 |
Tethrathoth-by-godgathor | E100#^^#*#^#^#100 |
Deutero-tethrathoth | E100#^^#*#^^#100 |
Trito-tethrathoth | E100#^^#*#^^#*#^^#100 |
Hecato-tethrathoth | E100(#^^#)^#100 |
Grideutertethrathoth | E100(#^^#)^##100 |
Tethragodgathor | E100(#^^#)^#^#100 |
Tethraduliath | E100(#^^#)^(#^^#)100 |
Tethrathruliath | E100(#^^#)^(#^^#*#^^#)100 |
Monster-Giant | E100(#^^#)^(#^^#)^#100 |
Monster-Grid | E100(#^^#)^(#^^#)^##100 |
Monster-Hecateract | E100(#^^#)^(#^^#)^#^#100 |
Super Monster-Giant | E100(#^^#)^(#^^#)^(#^^#)^#100 |
Terrible tethrathoth | E100(#^^#)^^#100 |
Terrible terrible tethrathoth | E100((#^^#)^^#)^^#100 |
Tethrathoth ba'al | E100#^^#>#100 |
Great and Terrible Tethrathoth | E100#^^#>#100#2 |
Grangol-carta-tethriterator | E100#^^#>#100#100 |
Tethriterhecate | E100#^^#>#*#100 |
Deutero-tethriterator | E100#^^#>#*#^^#>#100 |
Tethriterfact | E100(#^^#>#)^#100 |
Terrible tethriterator | E100(#^^#>#)^^#100 |
Tethriditerator | E100#^^#>(#+#)100 |
Tethrigriditerator | E100#^^#>##100 |
Tethrispatialator | E100#^^#>#^#100 |
Dustaculated-tethrathoth | E100#^^#>#^^#100 |
Gippatoth | 100↑↑(2 × 100) & 10 |
Tristaculated-tethrathoth | E100#^^#>#^^#>#^^#100 |
Gappatoth | 100↑↑(3 × 100) & 10 |
Geepatoth | 100↑↑(4 × 100) & 10 |
Tethracross | E100#^^##100 |
Boppatoth | 100↑↑(1002) & 10 |
Binary phi level (\(f_{\varphi(2,0)}^2(10)\) or \(f_{\zeta_0}^2(10)\) - \(f_{\varphi(1,0,0)}^2(10)\) or \(f_{\Gamma_0}^2(10)\))
editName | Value |
---|---|
Terrible tethracross | E100(#^^##)^^#100 |
Tethriterated-tethracross | E100(#^^##)^^#>#100 |
Secundotethrated-tethracross | E100(#^^##)^^##100 |
Tethritercross | E100#^^##>#100 |
Dustaculated-tethracross | E100#^^##>#^^##100 |
Tethracubor | E100#^^###100 |
Troppatoth | 100↑↑(1003) & 10 |
Terrible tethracubor | E100(#^^###)^^#100 |
Terrisquared-tethracubor | E100(#^^###)^^##100 |
Tethraducubor | E100(#^^###)^^###100 |
Tethritercubor | E100#^^###>#100 |
Dustaculated-tethracubor | E100#^^###>#^^###100 |
Tethrateron | E100#^^####100 |
Quadroppatoth | 100↑↑(1004) & 10 |
Terrible tethrateron | E100(#^^####)^^#100 |
Tethraduteron | E100(#^^####)^^####100 |
Tethra-hectateron | E100#^^####>#100 |
Dustaculated-tethrateron | E100#^^####>#^^####100 |
Tethrapeton | E100#^^#####100 |
Tethrahexon | E100#^^######100 |
Tethrahepton | E100#^^#^#7 |
Tethra-ogdon | E100#^^#^#8 |
Tethrennon | E100#^^#^#9 |
Tethradekon | E100#^^#^#10 |
Tethratope | E100#^^#^#100 |
Tethratopothoth | E100#^^(#^#*#)100 |
Tethratopodeus | E100#^^(#^#*#^#)100 |
Tethralattitope | E100#^^#^##100 |
Tethrato-godgathor | E100#^^#^#^#100 |
Tethrato-godtothol | E100#^^#^#^#^#100 |
Tethrato-tethrathoth | E100#^^#^^#100 |
Tethrarxitet | E100#^^#^^#^^#100 |
Pentacthulhum | E100#^^^#100 |
Kungulus | X↑↑↑100 & 10 |
Bachmann's collapsing level (\(f_{\varphi(1,0,0)}^2(10)\) or \(f_{\Gamma_0}^2(10)\) - \(f_{\psi_0(\varepsilon_{\Omega+1})}^2(10) = f_{\psi_0(\Omega_2)}^2(10)\) with respect to the Buchholz's function)
editName | Value |
---|---|
Pentacthuldugon | E100(#^^^#)^^^#100 |
Pentacthuliterator | E100#^^^#>#100 |
Hugexul | 200![200(1)200] |
Superior Hugexul | 200![200(1)200,200] |
Dustaculated-pentacthulhum | E100#^^^#>#^^^#100 |
Pentacthulcross | E100#^^^##100 |
Bisuperior Hugexul | 200![200(1)200,200,200] |
Pentacthulcubor | E100#^^^###100 |
Pentacthulteron | E100#^^^####100 |
Pentacthultope | E100#^^^#^#100 |
Pentacthularxitri | E100#^^^#^^^#100 |
Hexacthulhum | E100#^^^^#100 |
Hugebixul | 200![200(1)200(1)200] |
Hexacthuliterator | E100#^^^^#>#100 |
Superior Hugebixul | 200![200(1)200(1)200,200] |
Hexacthulcross | E100#^^^^##100 |
Hexacthultope | E100#^^^^#^#100 |
Heptacthulhum | E100#^^^^^#100 = E100#{5}#100 |
Hugetrixul | 200![200(1)200(1)200(1)200] |
Ogdacthulhum | E100#^^^^^^#100 = E100#{6}#100 |
Hugequaxul | 200![200(1)200(1)200(1)200(1)200] |
Ennacthulhum | E100#{7}#100 |
Dekacthulhum | E100#{8}#100 |
Goliath | E100#{10}#100 |
Godsgodgulus | E100#{#}#100 |
Godsgodeugulus | E100(#{#}#){#}#100 |
Godsgodguliterator | E100#{#}#>#100 |
Godsgodgulcross | E100#{#}##100 |
Godsgodgultope | E100#{#}#^#100 |
Godsgodarxitri | E100#{#}#{#}#100 |
Godsgodeus | E100#{#+#}#100 |
The centurion | E100#{#^#}#100 |
Super centurion | E100#{#^^#}#100 |
Ohmygosh-ohmygosh-ohmygooosh | E100#{#{#}#}#100 |
Blasphemorgulus | E100{#,#,1,2}100 |
Hundrelasphemorgue | E100{#,#+1,1,2}100 |
Enormaxul | 200![200(2)200] |
Superior Enormaxul | 200![200(2)200,200] |
Bisuperior Enormaxul | 200![200(2)200,200,200] |
Enormabixul | 200![200(2)200(2)200] |
Enormatrixul | 200![200(2)200(2)200(2)200] |
Enormaquaxul | 200![200(2)200(2)200(2)200(2)200] |
Goobawamba | {10,100 (1) 2} & 10 |
Destruxul | 200![200(200)200] |
Great Destruxul | 200![200(200)200(200)200] |
Bigreat Destruxul | 200![200(200)200(200)200(200)200] |
Bird's number | \(f_{\vartheta(\Omega^{\omega})+2}(f_{\vartheta(\Omega^{\omega})+1}(f_{\vartheta(\Omega^{\omega})}(f_{\vartheta(\Omega^{\omega})}(7))))\) |
TREE(3) (lower bound) | |
Destrubixul | 200![200([200(200)200])200] |
Destrutrixul | 200![200([200([200(200)200])200])200] |
Destruquaxul | 200![200([200([200([200(200)200])200])200])200] |
Golapulus | 10100&10&10 |
Ginglapulus | {10,100 (0,2) 2} & 10 |
Ganglapulus | {10,100 (0,3) 2} & 10 |
Geenglapulus | {10,100 (0,4) 2} & 10 |
Bolapulus | {10,100 (0,0,1) 2} & 10 |
Binglapulus | {10,100 (0,0,2) 2} & 10 |
Trolapulus | {10,100 (0,0,0,1) 2} & 10 |
Quadrolapulus | {10,100 (0,0,0,0,1) 2} & 10 |
Goplapulus | {10,100 ((1)1) 2} & 10 |
Giplapulus | {10,100 ((1)(1)1) 2} & 10 |
Boplapulus | {10,100 ((2)1) 2} & 10 |
Goduplapulus | {10,100 ((0,1)1) 2} & 10 |
Gotriplapulus | {10,100 (((1)1)1) 2} & 10 |
Extremexul | 200![1(1)[2200,200,200,200]] |
Higher computable level (\(f_{\psi_0(\varepsilon_{\Omega+1})}^2(10) = f_{\psi_0(\psi_2(0))}^2(10)\) with respect to Buchholz's function - ???)
editSince the comparison (or even the well-definedness) of numbers of this level is unknown, the order of entries does not necessarily imply the order of the sizes. Also, several numbers are defined by an OCF, which is uncomputable, and are not known to be computable.
Name | Value |
---|---|
Extremebixul | 200![1(1)[2200,200,200,200,200]] |
Extremetrixul | 200![1(1)[2200,200,200,200,200,200]] |
Extremequaxul | 200![1(1)[2200,200,200,200,200,200,200]] |
Gigantixul | 200![1(1)[3200,200,200]] |
Gigantibixul | 200![1(1)[3200,200,200,200]] |
Gigantitrixul | 200!1(1)[3200,200,200,200,200]] |
Gigantiquaxul | 200![1(1)[3200,200,200,200,200,200]] |
Nucleabixul | 200![[200200]200] |
SCG(13) (lower bound) | |
段階配列数 | g100(100) |
Nucleatrixul | 200![[[200200]200]200] |
Nucleaquaxul | 200![[[[200200]200]200]200] |
Kumakuma 3 variables ψ number | F10100(10100) |
グラハム数ver ε.0.1.0 | G64(4) |
Loader's number | D5(99) |
Bashicu matrix number with respect to Bashicu matrix system version 2.3 | |
6 (N primitive) | |
Y sequence number | f2000(1) |
the least transcendental integer |
Uncomputable numbers
editThe term "uncomputable number" here refers to the numbers defined in terms of uncomputably fast-growing functions. This table contains large numbers which are known to be ill-defined. For more details on the ill-definedness, click the "More..." link below.
Name | Value | Ill-defined? |
---|---|---|
1919-th busy beaver | \(\Sigma(1919)\) | No |
Fish number 4 | F463(3) | No |
\(\Xi(10^6)\) | No | |
\(\Sigma_\infty(10^9)\) | No | |
Rayo's number | Rayo(10100) | Partially (see #Axiom) |
Fish number 7 | F763(10100) | Partially |
BIG FOOT | FOOT10(10100) | Yes (see #Ill-definedness) |
Little Bigeddon | Yes | |
Sasquatch | Yes | |
Large Number Garden Number | \(f^{10}(10 \uparrow^{10} 10)\) | Not determined yet |
Oblivion | Yes (unformalised) | |
Utter Oblivion | Yes (unformalised) |
Notes
edit- ^ (S) means "in the short scale", and (L) means "in the long scale".