The sequence
c
n
=
∑
i
=
0
n
a
i
b
n
−
i
{\displaystyle c_{n}=\sum _{i=0}^{n}a_{i}b_{n-i}}
is called the discrete convolution or the Cauchy product of the sequences a n and b n .
For integers
e
{\displaystyle e}
and
f
{\displaystyle f}
define the convolution sum
S
e
,
f
(
n
)
=
∑
i
=
1
n
−
1
σ
e
(
i
)
σ
f
(
n
−
i
)
{\displaystyle S_{e,f}(n)=\sum _{i=1}^{n-1}\sigma _{e}(i)\sigma _{f}(n-i)}
. Note that
S
e
,
f
(
n
)
=
S
f
,
e
(
n
)
{\displaystyle S_{e,f}(n)=S_{f,e}(n)}
For odd integers
e
<=
f
,
e
+
f
=
2
,
4
,
6
,
8
,
12
{\displaystyle e<=f,\;\;e+f=2,4,6,8,12}
, the sum
S
e
,
f
(
n
)
{\displaystyle S_{e,f}(n)}
can be evaluated in terms of
σ
e
+
f
+
1
,
σ
e
+
f
−
1
,
⋯
,
σ
3
,
σ
,
{\displaystyle \sigma _{e+f+1},\sigma _{e+f-1},\cdots ,\sigma _{3},\sigma ,}
. Namely:
∑
i
=
1
n
−
1
σ
(
i
)
σ
(
n
−
i
)
=
5
12
σ
3
(
n
)
+
(
1
12
−
1
2
n
)
σ
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma (i)\sigma (n-i)={\frac {5}{12}}\sigma _{3}(n)+\left({\frac {1}{12}}-{\frac {1}{2}}n\right)\sigma (n).}
∑
i
=
1
n
−
1
σ
(
i
)
σ
3
(
n
−
i
)
=
7
80
σ
5
(
n
)
+
(
1
24
−
1
8
n
)
σ
3
(
n
)
−
1
240
σ
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma (i)\sigma _{3}(n-i)={\frac {7}{80}}\sigma _{5}(n)+\left({\frac {1}{24}}-{\frac {1}{8}}n\right)\sigma _{3}(n)-{\frac {1}{240}}\sigma (n).}
∑
i
=
1
n
−
1
σ
(
i
)
σ
5
(
n
−
i
)
=
5
126
σ
7
(
n
)
+
(
1
24
−
1
12
n
)
σ
5
(
n
)
+
1
504
σ
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma (i)\sigma _{5}(n-i)={\frac {5}{126}}\sigma _{7}(n)+\left({\frac {1}{24}}-{\frac {1}{12}}n\right)\sigma _{5}(n)+{\frac {1}{504}}\sigma (n).}
∑
i
=
1
n
−
1
σ
3
(
i
)
σ
3
(
n
−
i
)
=
1
120
σ
7
(
n
)
−
1
120
σ
3
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma _{3}(i)\sigma _{3}(n-i)={\frac {1}{120}}\sigma _{7}(n)-{\frac {1}{120}}\sigma _{3}(n).}
∑
i
=
1
n
−
1
σ
(
i
)
σ
7
(
n
−
i
)
=
11
480
σ
9
(
n
)
+
(
1
24
−
1
16
n
)
σ
7
(
n
)
−
1
480
σ
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma (i)\sigma _{7}(n-i)={\frac {11}{480}}\sigma _{9}(n)+\left({\frac {1}{24}}-{\frac {1}{16}}n\right)\sigma _{7}(n)-{\frac {1}{480}}\sigma (n).}
∑
i
=
1
n
−
1
σ
3
(
i
)
σ
5
(
n
−
i
)
=
11
5040
σ
9
(
n
)
−
1
240
σ
5
(
n
)
+
1
504
σ
3
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma _{3}(i)\sigma _{5}(n-i)={\frac {11}{5040}}\sigma _{9}(n)-{\frac {1}{240}}\sigma _{5}(n)+{\frac {1}{504}}\sigma _{3}(n).}
∑
i
=
1
n
−
1
σ
(
i
)
σ
11
(
n
−
i
)
=
691
65520
σ
13
(
n
)
+
(
1
24
−
1
24
n
)
σ
11
(
n
)
−
691
65520
σ
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma (i)\sigma _{11}(n-i)={\frac {691}{65520}}\sigma _{13}(n)+\left({\frac {1}{24}}-{\frac {1}{24}}n\right)\sigma _{11}(n)-{\frac {691}{65520}}\sigma (n).}
∑
i
=
1
n
−
1
σ
3
(
i
)
σ
9
(
n
−
i
)
=
1
2640
σ
13
(
n
)
−
1
240
σ
9
(
n
)
+
1
264
σ
3
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma _{3}(i)\sigma _{9}(n-i)={\frac {1}{2640}}\sigma _{13}(n)-{\frac {1}{240}}\sigma _{9}(n)+{\frac {1}{264}}\sigma _{3}(n).}
∑
i
=
1
n
−
1
σ
5
(
i
)
σ
7
(
n
−
i
)
=
1
10080
σ
13
(
n
)
+
1
504
σ
7
(
n
)
−
1
480
σ
5
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma _{5}(i)\sigma _{7}(n-i)={\frac {1}{10080}}\sigma _{13}(n)+{\frac {1}{504}}\sigma _{7}(n)-{\frac {1}{480}}\sigma _{5}(n).}
These are the only
S
e
,
f
(
n
)
{\displaystyle S_{e,f}(n)}
that can be evaluated in terms of divisor sums and polynomials in
n
{\displaystyle n}
. For odd integers
e
<=
f
,
e
+
f
=
10
,
14
,
16
,
18
,
20
,
24
{\displaystyle e<=f,\;\;e+f=10,14,16,18,20,24}
, evaluating the sum requires the Ramanujam function
τ
(
n
)
{\displaystyle \tau (n)}
. For example:
∑
i
=
1
n
−
1
σ
5
(
i
)
σ
5
(
n
−
i
)
=
65
174132
σ
11
(
n
)
+
1
252
σ
5
(
n
)
−
3
691
τ
(
n
)
.
{\displaystyle \sum _{i=1}^{n-1}\sigma _{5}(i)\sigma _{5}(n-i)={\frac {65}{174132}}\sigma _{11}(n)+{\frac {1}{252}}\sigma _{5}(n)-{\frac {3}{691}}\tau (n).}
There are many other similar formulas. For example:
∑
r
+
s
+
t
=
n
r
,
s
,
t
>
0
σ
(
r
)
σ
(
s
)
σ
(
t
)
=
7
192
σ
5
(
n
)
+
(
5
96
−
5
12
n
)
σ
3
(
n
)
−
(
1
192
−
1
16
n
+
1
8
n
2
)
σ
(
n
)
.
{\displaystyle \sum _{\begin{aligned}r+s+t=n\\r,\;s,\;t>0\end{aligned}}\sigma (r)\sigma (s)\sigma (t)={\frac {7}{192}}\sigma _{5}(n)+\left({\frac {5}{96}}-{\frac {5}{12}}n\right)\sigma _{3}(n)-\left({\frac {1}{192}}-{\frac {1}{16}}n+{\frac {1}{8}}n^{2}\right)\sigma (n).}
See Eisenstein series for a discussion of the series and functional identities involved in these formulas.[ 1]
σ
3
(
n
)
=
1
5
{
6
n
σ
1
(
n
)
−
σ
1
(
n
)
+
12
∑
0
<
k
<
n
σ
1
(
k
)
σ
1
(
n
−
k
)
}
.
{\displaystyle \sigma _{3}(n)={\frac {1}{5}}\left\{6n\sigma _{1}(n)-\sigma _{1}(n)+12\sum _{0<k<n}\sigma _{1}(k)\sigma _{1}(n-k)\right\}.}
[ 2]
σ
5
(
n
)
=
1
21
{
10
(
3
n
−
1
)
σ
3
(
n
)
+
σ
1
(
n
)
+
240
∑
0
<
k
<
n
σ
1
(
k
)
σ
3
(
n
−
k
)
}
.
{\displaystyle \sigma _{5}(n)={\frac {1}{21}}\left\{10(3n-1)\sigma _{3}(n)+\sigma _{1}(n)+240\sum _{0<k<n}\sigma _{1}(k)\sigma _{3}(n-k)\right\}.}
[ 3]
σ
7
(
n
)
=
1
20
{
21
(
2
n
−
1
)
σ
5
(
n
)
−
σ
1
(
n
)
+
504
∑
0
<
k
<
n
σ
1
(
k
)
σ
5
(
n
−
k
)
}
=
σ
3
(
n
)
+
120
∑
0
<
k
<
n
σ
3
(
k
)
σ
3
(
n
−
k
)
.
{\displaystyle {\begin{aligned}\sigma _{7}(n)&={\frac {1}{20}}\left\{21(2n-1)\sigma _{5}(n)-\sigma _{1}(n)+504\sum _{0<k<n}\sigma _{1}(k)\sigma _{5}(n-k)\right\}\\&=\sigma _{3}(n)+120\sum _{0<k<n}\sigma _{3}(k)\sigma _{3}(n-k).\end{aligned}}}
[ 3] [ 4]
σ
9
(
n
)
=
1
11
{
10
(
3
n
−
2
)
σ
7
(
n
)
+
σ
1
(
n
)
+
480
∑
0
<
k
<
n
σ
1
(
k
)
σ
7
(
n
−
k
)
}
=
1
11
{
21
σ
5
(
n
)
−
10
σ
3
(
n
)
+
5040
∑
0
<
k
<
n
σ
3
(
k
)
σ
5
(
n
−
k
)
}
.
{\displaystyle {\begin{aligned}\sigma _{9}(n)&={\frac {1}{11}}\left\{10(3n-2)\sigma _{7}(n)+\sigma _{1}(n)+480\sum _{0<k<n}\sigma _{1}(k)\sigma _{7}(n-k)\right\}\\&={\frac {1}{11}}\left\{21\sigma _{5}(n)-10\sigma _{3}(n)+5040\sum _{0<k<n}\sigma _{3}(k)\sigma _{5}(n-k)\right\}.\end{aligned}}}
[ 2] [ 5]
τ
(
n
)
=
65
756
σ
11
(
n
)
+
691
756
σ
5
(
n
)
−
691
3
∑
0
<
k
<
n
σ
5
(
k
)
σ
5
(
n
−
k
)
,
{\displaystyle \tau (n)={\frac {65}{756}}\sigma _{11}(n)+{\frac {691}{756}}\sigma _{5}(n)-{\frac {691}{3}}\sum _{0<k<n}\sigma _{5}(k)\sigma _{5}(n-k),}
where τ (n ) is Ramanujan's function. [ 6] [ 7]
Since σ k (n ) (for natural number k ) and τ (n ) are integers, the above formulas can be used to prove congruences[ 8] for the functions. See Ramanujan tau function for some examples.
Extend the domain of the partition function by setting p (0) = 1.
p
(
n
)
=
1
n
∑
1
≤
k
≤
n
σ
(
k
)
p
(
n
−
k
)
.
{\displaystyle p(n)={\frac {1}{n}}\sum _{1\leq k\leq n}\sigma (k)p(n-k).}
[ 9] This recurrence can be used to compute p (n ).
^ The paper by Huard, Ou, Spearman, and Williams in the external links also has proofs.
^ a b Ramanujan, On Certain Arithmetical Functions , Table IV; Papers , p. 146
^ a b Koblitz, ex. III.2.8
^ Koblitz, ex. III.2.3
^ Koblitz, ex. III.2.2
^ Koblitz, ex. III.2.4
^ Apostol, Modular Functions ... , Ex. 6.10
^ Apostol, Modular Functions... , Ch. 6 Ex. 10
^ G.H. Hardy, S. Ramannujan, Asymptotic Formulæ in Combinatory Analysis , § 1.3; in Ramannujan, Papers p. 279