Vanadium nitride, VN, is a chemical compound of vanadium and nitrogen.

Vanadium nitride
Names
IUPAC name
Vanadium nitride
Other names
Vanadium(III) nitride
Identifiers
ECHA InfoCard 100.042.151 Edit this at Wikidata
EC Number
  • 246-382-4
  • InChI=1S/N.V
    Key: SKKMWRVAJNPLFY-UHFFFAOYSA-N
Properties
VN
Molar mass 64.9482 g/mol
Appearance black powder
Density 6.13 g/cm3
Melting point 2,050 °C (3,720 °F; 2,320 K)
Structure
cubic, cF8
Fm3m, No. 225
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H302, H312, H332
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P312, P304+P340, P312, P322, P330, P363, P501
Flash point Non-flammable
Related compounds
Other anions
vanadium(III) oxide, vanadium carbide
Other cations
titanium nitride, chromium(III) nitride, niobium nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Vanadium nitride is formed during the nitriding of steel and increases wear resistance.[1] Another phase, V2N, also referred to as vanadium nitride, can be formed along with VN during nitriding.[2] VN has a cubic, rock-salt structure. There is also a low-temperature form, which contains V4 clusters.[3] The low-temperature phase results from a dynamic instability, when the energy of vibrational modes in the high-temperature NaCl-structure phase, are reduced below zero.[4]

It is a strong-coupled superconductor.[5] Nanocrystalline vanadium nitride has been claimed to have potential for use in supercapacitors.[6] The properties of vanadium nitride depend sensitively on the stoichiometry of the material.[7]

References

edit
  1. ^ Munozriofano, R; Casteletti, L; Nascente, P (2006). "Study of the wear behavior of ion nitrided steels with different vanadium contents". Surface and Coatings Technology. 200 (20–21): 6101. doi:10.1016/j.surfcoat.2005.09.026.
  2. ^ Thermo reactive diffusion vanadium nitride coatings on AISI 1020 steel U.Sen Key Engineering Materials vols 264-268 (2004),577
  3. ^ Kubel, F.; Lengauer, W.; Yvon, K.; Junod, A. (1988). "Structural phase transition at 205 K in stoichiometric vanadium nitride". Physical Review B. 38 (18): 12908–12912. Bibcode:1988PhRvB..3812908K. doi:10.1103/PhysRevB.38.12908. PMID 9946260.
  4. ^ A. B. Mei; O. Hellman; N. Wireklint; C. M. Schlepütz; D. G. Sangiovanni; B. Alling; A. Rockett; L. Hultman; I. Petrov & J. E. Greene (2015). "Dynamic and structural stability of cubic vanadium nitride". Physical Review B. 91 (5): 054101. Bibcode:2015PhRvB..91e4101M. doi:10.1103/PhysRevB.91.054101.
  5. ^ Zhao, B. R.; Chen, L.; Luo, H. L.; Mullin, D. P. (1984). "Superconducting and normal-state properties of vanadium nitride". Physical Review B. 29 (11): 6198. Bibcode:1984PhRvB..29.6198Z. doi:10.1103/PhysRevB.29.6198.
  6. ^ Choi, D.; Blomgren, G. E.; Kumta, P. N. (2006). "Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors". Advanced Materials. 18 (9): 1178. Bibcode:2006AdM....18.1178C. doi:10.1002/adma.200502471. S2CID 96858834.
  7. ^ Mei, A. B.; Tuteja, M.; Sangiovanni, D. G.; Haasch, R. T.; Rockett, A.; Hultman, L.; Petrov, I.; Greene, J. E. (2016-08-25). "Growth, nanostructure, and optical properties of epitaxial VNx/MgO(001) (0.80 ≤ x ≤ 1.00) layers deposited by reactive magnetron sputtering". Journal of Materials Chemistry C. 4 (34): 7924–7938. doi:10.1039/C6TC02289H. ISSN 2050-7534.