In number theory, a Wilson prime is a prime number such that divides , where "" denotes the factorial function; compare this with Wilson's theorem, which states that every prime divides . Both are named for 18th-century English mathematician John Wilson; in 1770, Edward Waring credited the theorem to Wilson,[1] although it had been stated centuries earlier by Ibn al-Haytham.[2]
Named after | John Wilson |
---|---|
No. of known terms | 3 |
First terms | 5, 13, 563 |
OEIS index |
|
The only known Wilson primes are 5, 13, and 563 (sequence A007540 in the OEIS). Costa et al. write that "the case is trivial", and credit the observation that 13 is a Wilson prime to Mathews (1892).[3][4] Early work on these numbers included searches by N. G. W. H. Beeger and Emma Lehmer,[5][3][6] but 563 was not discovered until the early 1950s, when computer searches could be applied to the problem.[3][7][8] If any others exist, they must be greater than 2 × 1013.[3] It has been conjectured that infinitely many Wilson primes exist, and that the number of Wilson primes in an interval is about .[9]
Several computer searches have been done in the hope of finding new Wilson primes.[10][11][12] The Ibercivis distributed computing project includes a search for Wilson primes.[13] Another search was coordinated at the Great Internet Mersenne Prime Search forum.[14]
Generalizations
editWilson primes of order n
editWilson's theorem can be expressed in general as for every integer and prime . Generalized Wilson primes of order n are the primes p such that divides .
It was conjectured that for every natural number n, there are infinitely many Wilson primes of order n.
The smallest generalized Wilson primes of order are:
Near-Wilson primes
editp | B |
---|---|
1282279 | +20 |
1306817 | −30 |
1308491 | −55 |
1433813 | −32 |
1638347 | −45 |
1640147 | −88 |
1647931 | +14 |
1666403 | +99 |
1750901 | +34 |
1851953 | −50 |
2031053 | −18 |
2278343 | +21 |
2313083 | +15 |
2695933 | −73 |
3640753 | +69 |
3677071 | −32 |
3764437 | −99 |
3958621 | +75 |
5062469 | +39 |
5063803 | +40 |
6331519 | +91 |
6706067 | +45 |
7392257 | +40 |
8315831 | +3 |
8871167 | −85 |
9278443 | −75 |
9615329 | +27 |
9756727 | +23 |
10746881 | −7 |
11465149 | −62 |
11512541 | −26 |
11892977 | −7 |
12632117 | −27 |
12893203 | −53 |
14296621 | +2 |
16711069 | +95 |
16738091 | +58 |
17879887 | +63 |
19344553 | −93 |
19365641 | +75 |
20951477 | +25 |
20972977 | +58 |
21561013 | −90 |
23818681 | +23 |
27783521 | −51 |
27812887 | +21 |
29085907 | +9 |
29327513 | +13 |
30959321 | +24 |
33187157 | +60 |
33968041 | +12 |
39198017 | −7 |
45920923 | −63 |
51802061 | +4 |
53188379 | −54 |
56151923 | −1 |
57526411 | −66 |
64197799 | +13 |
72818227 | −27 |
87467099 | −2 |
91926437 | −32 |
92191909 | +94 |
93445061 | −30 |
93559087 | −3 |
94510219 | −69 |
101710369 | −70 |
111310567 | +22 |
117385529 | −43 |
176779259 | +56 |
212911781 | −92 |
216331463 | −36 |
253512533 | +25 |
282361201 | +24 |
327357841 | −62 |
411237857 | −84 |
479163953 | −50 |
757362197 | −28 |
824846833 | +60 |
866006431 | −81 |
1227886151 | −51 |
1527857939 | −19 |
1636804231 | +64 |
1686290297 | +18 |
1767839071 | +8 |
1913042311 | −65 |
1987272877 | +5 |
2100839597 | −34 |
2312420701 | −78 |
2476913683 | +94 |
3542985241 | −74 |
4036677373 | −5 |
4271431471 | +83 |
4296847931 | +41 |
5087988391 | +51 |
5127702389 | +50 |
7973760941 | +76 |
9965682053 | −18 |
10242692519 | −97 |
11355061259 | −45 |
11774118061 | −1 |
12896325149 | +86 |
13286279999 | +52 |
20042556601 | +27 |
21950810731 | +93 |
23607097193 | +97 |
24664241321 | +46 |
28737804211 | −58 |
35525054743 | +26 |
41659815553 | +55 |
42647052491 | +10 |
44034466379 | +39 |
60373446719 | −48 |
64643245189 | −21 |
66966581777 | +91 |
67133912011 | +9 |
80248324571 | +46 |
80908082573 | −20 |
100660783343 | +87 |
112825721339 | +70 |
231939720421 | +41 |
258818504023 | +4 |
260584487287 | −52 |
265784418461 | −78 |
298114694431 | +82 |
A prime satisfying the congruence with small can be called a near-Wilson prime. Near-Wilson primes with are bona fide Wilson primes. The table on the right lists all such primes with from 106 up to 4×1011.[3]
Wilson numbers
editA Wilson number is a natural number such that , where and where the term is positive if and only if has a primitive root and negative otherwise.[15] For every natural number , is divisible by , and the quotients (called generalized Wilson quotients) are listed in OEIS: A157249. The Wilson numbers are
If a Wilson number is prime, then is a Wilson prime. There are 13 Wilson numbers up to 5×108.[16]
See also
editReferences
edit- ^ Edward Waring, Meditationes Algebraicae (Cambridge, England: 1770), page 218 (in Latin). In the third (1782) edition of Waring's Meditationes Algebraicae, Wilson's theorem appears as problem 5 on page 380. On that page, Waring states: "Hanc maxime elegantem primorum numerorum proprietatem invenit vir clarissimus, rerumque mathematicarum peritissimus Joannes Wilson Armiger." (A man most illustrious and most skilled in mathematics, Squire John Wilson, found this most elegant property of prime numbers.)
- ^ O'Connor, John J.; Robertson, Edmund F. "Abu Ali al-Hasan ibn al-Haytham". MacTutor History of Mathematics Archive. University of St Andrews.
- ^ a b c d e Costa, Edgar; Gerbicz, Robert; Harvey, David (2014). "A search for Wilson primes". Mathematics of Computation. 83 (290): 3071–3091. arXiv:1209.3436. doi:10.1090/S0025-5718-2014-02800-7. MR 3246824. S2CID 6738476.
- ^ Mathews, George Ballard (1892). "Example 15". Theory of Numbers, Part 1. Deighton & Bell. p. 318.
- ^ Lehmer, Emma (April 1938). "On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson" (PDF). Annals of Mathematics. 39 (2): 350–360. doi:10.2307/1968791. JSTOR 1968791. Retrieved 8 March 2011.
- ^ Beeger, N. G. W. H. (1913–1914). "Quelques remarques sur les congruences et ". The Messenger of Mathematics. 43: 72–84.
- ^ Wall, D. D. (October 1952). "Unpublished mathematical tables" (PDF). Mathematical Tables and Other Aids to Computation. 6 (40): 238. doi:10.2307/2002270. JSTOR 2002270.
- ^ Goldberg, Karl (1953). "A table of Wilson quotients and the third Wilson prime". J. London Math. Soc. 28 (2): 252–256. doi:10.1112/jlms/s1-28.2.252.
- ^ The Prime Glossary: Wilson prime
- ^ McIntosh, R. (9 March 2004). "WILSON STATUS (Feb. 1999)". E-Mail to Paul Zimmermann. Retrieved 6 June 2011.
- ^ Crandall, Richard E.; Dilcher, Karl; Pomerance, Carl (1997). "A search for Wieferich and Wilson primes". Math. Comput. 66 (217): 433–449. Bibcode:1997MaCom..66..433C. doi:10.1090/S0025-5718-97-00791-6. See p. 443.
- ^ Ribenboim, P.; Keller, W. (2006). Die Welt der Primzahlen: Geheimnisse und Rekorde (in German). Berlin Heidelberg New York: Springer. p. 241. ISBN 978-3-540-34283-0.
- ^ "Ibercivis site". Archived from the original on 2012-06-20. Retrieved 2011-03-10.
- ^ Distributed search for Wilson primes (at mersenneforum.org)
- ^ see Gauss's generalization of Wilson's theorem
- ^ Agoh, Takashi; Dilcher, Karl; Skula, Ladislav (1998). "Wilson quotients for composite moduli" (PDF). Math. Comput. 67 (222): 843–861. Bibcode:1998MaCom..67..843A. doi:10.1090/S0025-5718-98-00951-X.
Further reading
edit- Crandall, Richard E.; Pomerance, Carl (2001). Prime Numbers: A Computational Perspective. Springer-Verlag. p. 29. ISBN 978-0-387-94777-8.
- Pearson, Erna H. (1963). "On the Congruences (p − 1)! ≡ −1 and 2p−1 ≡ 1 (mod p2)" (PDF). Math. Comput. 17: 194–195.
External links
edit- The Prime Glossary: Wilson prime
- Weisstein, Eric W. "Wilson prime". MathWorld.
- Status of the search for Wilson primes