1-Methyltryptophan is a chemical compound that is an inhibitor of the tryptophan catabolic enzyme indoleamine 2,3-dioxygenase (IDO or INDO EC 1.13.11.52).[1] It is a chiral compound that can exist as both D- and L-enantiomers.
Names | |
---|---|
Preferred IUPAC name
2-Amino-3-(1-methyl-1H-indol-3-yl)propanoic acid | |
Other names
1-Methyl-DL-tryptophan; DL-1-Methyltryptophan; ARBRIN; Indoximod
| |
Identifiers | |
| |
3D model (JSmol)
|
|
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.043.765 |
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C12H14N2O2 | |
Molar mass | 218.256 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
The L-isomer (L-1MT) inhibits IDO weakly but also serves as an enzyme substrate.
The D-isomer (D-1MT) does not inhibit IDO at all, but it can inhibit the IDO-related enzyme IDO2[2] and restore mTOR signaling in cells starved of tryptophan due to IDO activity.[3] D-1MT is also known as indoximod and is currently in clinical trials for cancer treatment, such as for advanced melanoma.[4]
A U.S. patent covering salt and prodrug formulations of indoximod was issued to NewLink Genetics on August 15, 2017 providing exclusivity until at least 2036.[5][6]
References
edit- ^ Cady, SG; Sono, M (1991). "1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-3-benzo[b]thienyl-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase". Archives of Biochemistry and Biophysics. 291 (2): 326–33. doi:10.1016/0003-9861(91)90142-6. PMID 1952947.
- ^ Metz, R; Duhadaway, J. B.; Kamasani, U; Laury-Kleintop, L; Muller, A. J.; Prendergast, G. C. (2007). "Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan". Cancer Research. 67 (15): 7082–7. doi:10.1158/0008-5472.CAN-07-1872. PMID 17671174.
- ^ Metz, R; Rust, S; Duhadaway, J. B.; Mautino, M. R.; Munn, D. H.; Vahanian, N. N.; Link, C. J.; Prendergast, G. C. (2012). "IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: A novel IDO effector pathway targeted by D-1-methyl-tryptophan". OncoImmunology. 1 (9): 1460–1468. doi:10.4161/onci.21716. PMC 3525601. PMID 23264892.
- ^ IDO Inhibitors Emerging as New Players on Checkpoint Blockade Scene. Aug 2017
- ^ "NewLink Genetics". finpedia.co. Retrieved 2019-05-09.
- ^ "NewLink Genetics Annual Report (Form 10-K)". fintel.io. April 9, 2018.