Rho guanine nucleotide exchange factor 5 is a protein that in humans is encoded by the ARHGEF5 gene.[5][6][7]
Rho GTPases play a fundamental role in numerous cellular processes initiated by extracellular stimuli that work through G protein-coupled receptors. The encoded protein may form a complex with G proteins and stimulate Rho-dependent signals. This protein may be involved in the control of cytoskeletal organization.[7]
References
edit- ^ a b c GRCh38: Ensembl release 89: ENSG00000050327 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000033542 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ Chan AM, McGovern ES, Catalano G, Fleming TP, Miki T (Apr 1994). "Expression cDNA cloning of a novel oncogene with sequence similarity to regulators of small GTP-binding proteins". Oncogene. 9 (4): 1057–63. PMID 8134109.
- ^ Takai S, Chan AM, Yamada K, Miki T (Oct 1995). "Assignment of the human TIM proto-oncogene to 7q33→q35". Cancer Genet Cytogenet. 83 (1): 87–9. doi:10.1016/S0165-4608(95)00017-8. PMID 7656213.
- ^ a b "Entrez Gene: ARHGEF5 Rho guanine nucleotide exchange factor (GEF) 5".
External links
edit- Human ARHGEF5 genome location and ARHGEF5 gene details page in the UCSC Genome Browser.
Further reading
edit- Snyder JT, Worthylake DK, Rossman KL, et al. (2002). "Structural basis for the selective activation of Rho GTPases by Dbl exchange factors". Nat. Struct. Biol. 9 (6): 468–75. doi:10.1038/nsb796. PMID 12006984. S2CID 13161854.
- Wistow G, Bernstein SL, Wyatt MK, et al. (2002). "Expressed sequence tag analysis of adult human lens for the NEIBank Project: over 2000 non-redundant transcripts, novel genes and splice variants". Mol. Vis. 8: 171–84. PMID 12107413.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Hillier LW, Fulton RS, Fulton LA, et al. (2003). "The DNA sequence of human chromosome 7". Nature. 424 (6945): 157–64. Bibcode:2003Natur.424..157H. doi:10.1038/nature01782. PMID 12853948.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Umetsu DT, Dekruyff RH (2005). "Regulation of tolerance in the respiratory tract: TIM-1, hygiene, and the environment". Ann. N. Y. Acad. Sci. 1029 (1): 88–93. doi:10.1196/annals.1309.012. PMID 15681748. S2CID 38149688.
- Benzinger A, Muster N, Koch HB, et al. (2005). "Targeted proteomic analysis of 14-3-3 sigma, a p53 effector commonly silenced in cancer". Mol. Cell. Proteomics. 4 (6): 785–95. doi:10.1074/mcp.M500021-MCP200. PMID 15778465.
- Zhang Y, Wolf-Yadlin A, Ross PL, et al. (2005). "Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules". Mol. Cell. Proteomics. 4 (9): 1240–50. doi:10.1074/mcp.M500089-MCP200. PMID 15951569.