This article relies largely or entirely on a single source. (April 2024) |
In coding theory, alternant codes form a class of parameterised error-correcting codes which generalise the BCH codes.
Definition
editAn alternant code over GF(q) of length n is defined by a parity check matrix H of alternant form Hi,j = αjiyi, where the αj are distinct elements of the extension GF(qm), the yi are further non-zero parameters again in the extension GF(qm) and the indices range as i from 0 to δ − 1, j from 1 to n.
Properties
editThe parameters of this alternant code are length n, dimension ≥ n − mδ and minimum distance ≥ δ + 1. There exist long alternant codes which meet the Gilbert–Varshamov bound.
The class of alternant codes includes
References
edit- F.J. MacWilliams; N.J.A. Sloane (1977). The Theory of Error-Correcting Codes. North-Holland. pp. 332–338. ISBN 0-444-85193-3.