Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It may be defined in terms of the eccentricity, e, or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis):

Angular eccentricity α (alpha) and linear eccentricity (ε). Note that OA=BF=a.

Angular eccentricity is not currently used in English language publications on mathematics, geodesy or map projections but it does appear in older literature.[1]

Any non-dimensional parameter of the ellipse may be expressed in terms of the angular eccentricity. Such expressions are listed in the following table after the conventional definitions.[2] in terms of the semi-axes. The notation for these parameters varies. Here we follow Rapp:[2]

(first) eccentricity
second eccentricity      
third eccentricity      
(first) flattening
second flattening  
third flattening

The alternative expressions for the flattenings would guard against large cancellations in numerical work.

References

edit
  1. ^ Haswell, Charles Haynes (1920). Mechanics' and Engineers' Pocket-book of Tables, Rules, and Formulas. Harper & Brothers. Retrieved 2007-04-09.
  2. ^ a b Rapp, Richard H. (1991). Geometric Geodesy, Part I, Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus, Ohio.[1]
edit