Antimony sulfate, Sb2(SO4)3, is a hygroscopic salt formed by reacting antimony or its compounds with hot sulfuric acid. It is used in doping of semiconductors and in the production of explosives and fireworks.[4]

Antimony sulfate
Names
IUPAC name
Antimony(III) sulfate
Other names
Antimonous sulfate
Antimony trisulfate
Diantimony trisulfate
Diantimony tris(sulphate)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.028.370 Edit this at Wikidata
EC Number
  • 231-207-6
UNII
  • InChI=1S/3H2O4S.2Sb/c3*1-5(2,3)4;;/h3*(H2,1,2,3,4);;/q;;;2*+3/p-6 checkY
    Key: MVMLTMBYNXHXFI-UHFFFAOYSA-H checkY
  • [SbH3+3].[SbH3+3].[O-]S(=O)(=O)[O-].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O
Properties[2]
Sb2(SO4)3
Molar mass 531.7078 g/mol
Density 3.94 g/cm3[1]
Hydrolysis[1]
Structure[1]
monoclinic
P21/c
a = 13.12 Å, b = 4.75 Å, c = 17.55 Å
α = 90°, β = 126.3°, γ = 90°
881 Å3
Hazards
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)[3]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)[3]
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)

Structure

edit

Antimony(III) sulfate consists of interconnected SbO6 octahedra, which the corners are bonded to the sulfate ion.[1]

Production

edit

Antimony(III) sulfate was first produced in 1827 by the reaction of antimony(III) oxide and 18 molar sulfuric acid at 200 °C:[1]

Sb2O3 + 3 H2SO4 → Sb2(SO4)3 + 3 H2O

The concentration of the sulfuric acid is important, as a lower concentration will produce basic antimony oxides, while a higher concentration will produce antimony(III) pyrosulfate. The reaction of elemental antimony and 18 M sulfuric acid will also produce antimony(III) sulfate:[4]

2 Sb + 6 H2SO4 → Sb2(SO4)3 + 3 SO2 + 6 H2O

Chemical properties

edit

Antimony sulfate is deliquescent, hydrolyzing in moist air and water, producing various basic antimony oxides and antimony(III) oxide. It is soluble in acids.[1][4][5]

Uses

edit

Owing to its solubility, antimony sulfate has uses in the doping of semiconductors.[6] It is also used for coating anodes in electrolysis and in the production of explosives and fireworks.[4]

Safety

edit

Antimony(III) sulfate causes irritation to the skin and mucous membranes.[7]

Natural occurrence

edit

Natural analogue of the exact compound is yet unknown. However, basic hydrated Sb sulfates are known as the minerals klebelsbergite[8][9] and coquandite.[10][9]

References

edit
  1. ^ a b c d e f R. Mercier; J. Douglade; J. Bernard (1976). "Structure cristalline de Sb2O3.3SO3". Acta Crystallographica Section B (in French). 32 (10): 2787–2791. doi:10.1107/S0567740876008881.
  2. ^ Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 4.64. ISBN 0-8493-0486-5.
  3. ^ a b NIOSH Pocket Guide to Chemical Hazards. "#0036". National Institute for Occupational Safety and Health (NIOSH).
  4. ^ a b c d Herbst, Karl Albert et al. (1985) Antimony and antimony compounds in Ullmann's Encyclopedia of Industrial Chemistry 5th ed., vol. A3, p. 70. ISBN 3-527-20103-3.
  5. ^ Nicholas C. Norman (31 December 1997). Chemistry of arsenic, antimony, and bismuth. Springer. pp. 193–. ISBN 978-0-7514-0389-3.
  6. ^ Method of forming phase change layer, method of manufacturing a storage node using the same, and method of manufacturing phase change memory device using the same – Samsung Electronics Co., Ltd. Freepatentsonline.com (2007-01-02). Retrieved on 2011-12-23.
  7. ^ Antimony(III) Sulfate Material Safety Data Sheet Archived 2012-04-26 at the Wayback Machine. Prochemonline.
  8. ^ "Klebelsbergite".
  9. ^ a b "List of Minerals". 21 March 2011.
  10. ^ "Coquandite".