QuantumATK (formerly Atomistix ToolKit or ATK) is a commercial software for atomic-scale modeling and simulation of nanosystems. The software was originally developed by Atomistix A/S, and was later acquired by QuantumWise following the Atomistix bankruptcy.[1] QuantumWise was then acquired by Synopsys in 2017.[2]
Atomistix ToolKit is a further development of TranSIESTA-C, which in turn in based on the technology, models, and algorithms developed in the academic codes TranSIESTA,[3] and McDCal,[4] employing localized basis sets as developed in SIESTA.[5]
Features
editAtomistix ToolKit combines density functional theory with non-equilibrium Green's functions for first principles electronic structure and transport calculations of
- electrode—nanostructure—electrode systems (two-probe systems)
- molecules
- periodic systems (bulk crystals and nanotubes)
The key features are
- Calculation of transport properties of two-probe systems under an applied bias voltage
- Calculation of energy spectra, wave functions, electron densities, atomic forces, effective potentials etc.
- Calculation of spin-polarized physical properties
- Geometry optimization
- A Python-based NanoLanguage scripting environment
See also
edit- Atomistix Virtual NanoLab — a graphical user interface
- NanoLanguage
- Atomistix
- Quantum chemistry computer programs
- Molecular mechanics programs
References
edit- ^ "QuantumATK Atomic-Scale Modeling for Semiconductor & Materials".
- ^ "Synopsys Strengthens Design-Technology Co-Optimization Solution with Acquisition of QuantumWise".
- ^ Brandbyge, Mads; Mozos, José-Luis; Ordejón, Pablo; Taylor, Jeremy; Stokbro, Kurt (2002). "Density-functional method for nonequilibrium electron transport". Physical Review B. 65 (16): 165401. arXiv:cond-mat/0110650. Bibcode:2002PhRvB..65p5401B. doi:10.1103/PhysRevB.65.165401. S2CID 44943573.
- ^ Taylor, Jeremy; Guo, Hong; Wang, Jian (2001). "Ab initiomodeling of quantum transport properties of molecular electronic devices". Physical Review B. 63 (24): 245407. Bibcode:2001PhRvB..63x5407T. doi:10.1103/PhysRevB.63.245407. hdl:10722/43343.
- ^ Soler, José M.; Artacho, Emilio; Gale, Julian D.; García, Alberto; Junquera, Javier; Ordejón, Pablo; Sánchez-Portal, Daniel (2002). "The SIESTA method forab initioorder-Nmaterials simulation". Journal of Physics: Condensed Matter. 14 (11): 2745–2779. arXiv:cond-mat/0104182. Bibcode:2002JPCM...14.2745S. doi:10.1088/0953-8984/14/11/302. S2CID 250812001.
External links
edit