Barium tungstate is an inorganic chemical compound of barium and the tungstate anion.
Names | |
---|---|
Other names
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.029.195 |
EC Number |
|
PubChem CID
|
|
| |
| |
Properties[3] | |
BaWO4 | |
Molar mass | 385.16 g·mol−1 |
Appearance | white solid |
Density | 5.04 g·cm−3 (25 °C) 7.26 g·cm−3 (high pressure form)[1] |
Melting point | 1502 °C[2] |
insoluble | |
Structure[4] | |
tetragonal | |
a = 561.4 pm, c = 1271.5 pm
| |
Hazards | |
GHS labelling:[3] | |
H302, H332 | |
Related compounds | |
Related compounds
|
Radium tungstate |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Synthesis and properties
editBarium tungstate can be obtained from the precipitation reaction between barium nitrate and ammonium paratungstate or sodium tungstate.[5][6]
- Ba(NO3)2 + Na2WO4 → BaWO4↓ + 2 NaNO3
It is a white solid,[3] which at normal conditions forms tetragonal crystals similar to scheelite, CaWO4. Under pressures above 7 GPa, the compound undergoes transformation to a monoclinic structure similar to fergusonite, YNbO4.[7]
Uses
editBarium tungstate can be used as a frequency shifter in laser technology.[8] It has uses in X-ray photography and as a pigment.[4]
References
edit- ^ Kawada, I.; Kato, K.; Fujita, T. (1974-08-01). "BaWO 4 -II (a high-pressure form)". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 30 (8): 2069–2071. Bibcode:1974AcCrB..30.2069K. doi:10.1107/S0567740874006431. ISSN 0567-7408.
- ^ Ge, W. W.; Zhang, H. J.; Wang, J. Y.; Liu, J. H.; Xu, X. G.; Hu, X. B.; Jiang, M. H.; Ran, D. G.; Sun, S. Q.; Xia, H. R.; Boughton, R. I. (2005). "Thermal and mechanical properties of BaWO4 crystal". Journal of Applied Physics. 98 (1): 013542. doi:10.1063/1.1957125. ISSN 0021-8979.
- ^ a b c "MSDS-343137". Sigma-Aldrich. Retrieved 2020-07-10.
- ^ a b Perry, Dale L. (2011). Handbook of Inorganic Compounds (2nd ed.). CRC Press. p. 59. ISBN 978-1-4398-1461-1.
- ^ Vidya, S.; Solomon, Sam; Thomas, J. K. (2013). "Synthesis, Characterization, and Low Temperature Sintering of Nanostructured BaWO4 for Optical and LTCC Applications". Advances in Condensed Matter Physics. 2013: 1–11. doi:10.1155/2013/409620. ISSN 1687-8108.
- ^ Mohamed Jaffer Sadiq, M.; Samson Nesaraj, A. (2015). "Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample". Journal of Nanostructure in Chemistry. 5 (1): 45–54. doi:10.1007/s40097-014-0133-y. ISSN 2008-9244.
- ^ Errandonea, D.; Pellicer-Porres, J.; Manjón, F. J.; Segura, A.; Ferrer-Roca, Ch.; Kumar, R. S.; Tschauner, O.; López-Solano, J.; Rodríguez-Hernández, P.; Radescu, S.; Mujica, A. (2006-06-05). "Determination of the high-pressure crystal structure of BaWO4 and PbWO4". Physical Review B. 73 (22): 224103. arXiv:cond-mat/0602632. Bibcode:2006PhRvB..73v4103E. doi:10.1103/PhysRevB.73.224103. ISSN 1098-0121. S2CID 55297808.
- ^ Colin E., Webb; Jones, Julian D. C. (2004). Handbook of Laser Technology and Applications: Laser Design and Laser Systems. CRC Press. p. 486. ISBN 978-0-7503-0963-9.