Bell diagonal states are a class of bipartite qubit states that are frequently used in quantum information and quantum computation theory.[1]

Definition

edit

The Bell diagonal state is defined as the probabilistic mixture of Bell states:

 
 
 
 

In density operator form, a Bell diagonal state is defined as

 

where   is a probability distribution. Since  , a Bell diagonal state is determined by three real parameters. The maximum probability of a Bell diagonal state is defined as  .

Properties

edit

1. A Bell-diagonal state is separable if all the probabilities are less or equal to 1/2, i.e.,  .[2]

2. Many entanglement measures have a simple formulas for entangled Bell-diagonal states:[1]

Relative entropy of entanglement:  ,[3] where   is the binary entropy function.

Entanglement of formation:  ,where   is the binary entropy function.

Negativity:  

Log-negativity:  

3. Any 2-qubit state where the reduced density matrices are maximally mixed,  , is Bell-diagonal in some local basis. Viz., there exist local unitaries   such that   is Bell-diagonal.[2]

References

edit
  1. ^ a b Horodecki, Ryszard; Horodecki, Paweł; Horodecki, Michał; Horodecki, Karol (2009-06-17). "Quantum entanglement". Reviews of Modern Physics. 81 (2): 865–942. arXiv:quant-ph/0702225. Bibcode:2009RvMP...81..865H. doi:10.1103/RevModPhys.81.865. S2CID 260606370.
  2. ^ a b Horodecki, Ryszard; Horodecki, Michal/ (1996-09-01). "Information-theoretic aspects of inseparability of mixed states". Physical Review A. 54 (3): 1838–1843. arXiv:quant-ph/9607007. Bibcode:1996PhRvA..54.1838H. doi:10.1103/PhysRevA.54.1838. PMID 9913669. S2CID 2340228.
  3. ^ Vedral, V.; Plenio, M. B.; Rippin, M. A.; Knight, P. L. (1997-03-24). "Quantifying Entanglement". Physical Review Letters. 78 (12): 2275–2279. arXiv:quant-ph/9702027. Bibcode:1997PhRvL..78.2275V. doi:10.1103/PhysRevLett.78.2275. hdl:10044/1/300. S2CID 16118336.