Cantellated 7-simplexes

(Redirected from Bicantellated 7-simplex)

7-simplex

Cantellated 7-simplex

Bicantellated 7-simplex

Tricantellated 7-simplex

Birectified 7-simplex

Cantitruncated 7-simplex

Bicantitruncated 7-simplex

Tricantitruncated 7-simplex
Orthogonal projections in A7 Coxeter plane

In seven-dimensional geometry, a cantellated 7-simplex is a convex uniform 7-polytope, being a cantellation of the regular 7-simplex.

There are unique 6 degrees of cantellation for the 7-simplex, including truncations.

Cantellated 7-simplex

edit
Cantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol rr{3,3,3,3,3,3}
or  
Coxeter-Dynkin diagram              
or            
6-faces
5-faces
4-faces
Cells
Faces
Edges 1008
Vertices 168
Vertex figure 5-simplex prism
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

edit
  • Small rhombated octaexon (acronym: saro) (Jonathan Bowers)[1]

Coordinates

edit

The vertices of the cantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 8-orthoplex.

Images

edit
orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]

Bicantellated 7-simplex

edit
Bicantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol r2r{3,3,3,3,3,3}
or  
Coxeter-Dynkin diagrams              
or          
6-faces
5-faces
4-faces
Cells
Faces
Edges 2520
Vertices 420
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

edit
  • Small birhombated octaexon (acronym: sabro) (Jonathan Bowers)[2]

Coordinates

edit

The vertices of the bicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 8-orthoplex.

Images

edit
orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]

Tricantellated 7-simplex

edit
Tricantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol r3r{3,3,3,3,3,3}
or  
Coxeter-Dynkin diagrams              
or        
6-faces
5-faces
4-faces
Cells
Faces
Edges 3360
Vertices 560
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

edit
  • Small trirhombihexadecaexon (stiroh) (Jonathan Bowers)[3]

Coordinates

edit

The vertices of the tricantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,2,2). This construction is based on facets of the tricantellated 8-orthoplex.

Images

edit
orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]

Cantitruncated 7-simplex

edit
Cantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol tr{3,3,3,3,3,3}
or  
Coxeter-Dynkin diagrams              
           
6-faces
5-faces
4-faces
Cells
Faces
Edges 1176
Vertices 336
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

edit
  • Great rhombated octaexon (acronym: garo) (Jonathan Bowers)[4]

Coordinates

edit

The vertices of the cantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,3). This construction is based on facets of the cantitruncated 8-orthoplex.

Images

edit
orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]

Bicantitruncated 7-simplex

edit
Bicantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t2r{3,3,3,3,3,3}
or  
Coxeter-Dynkin diagrams              
or          
6-faces
5-faces
4-faces
Cells
Faces
Edges 2940
Vertices 840
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

edit
  • Great birhombated octaexon (acronym: gabro) (Jonathan Bowers)[5]

Coordinates

edit

The vertices of the bicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 8-orthoplex.

Images

edit
orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [7] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [5] [4] [3]

Tricantitruncated 7-simplex

edit
Tricantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t3r{3,3,3,3,3,3}
or  
Coxeter-Dynkin diagrams              
or        
6-faces
5-faces
4-faces
Cells
Faces
Edges 3920
Vertices 1120
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

edit
  • Great trirhombihexadecaexon (acronym: gatroh) (Jonathan Bowers)[6]

Coordinates

edit

The vertices of the tricantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,4). This construction is based on facets of the tricantitruncated 8-orthoplex.

Images

edit
orthographic projections
Ak Coxeter plane A7 A6 A5
Graph      
Dihedral symmetry [8] [[7]] [6]
Ak Coxeter plane A4 A3 A2
Graph      
Dihedral symmetry [[5]] [4] [[3]]
edit

This polytope is one of 71 uniform 7-polytopes with A7 symmetry.

A7 polytopes
 
t0
 
t1
 
t2
 
t3
 
t0,1
 
t0,2
 
t1,2
 
t0,3
 
t1,3
 
t2,3
 
t0,4
 
t1,4
 
t2,4
 
t0,5
 
t1,5
 
t0,6
 
t0,1,2
 
t0,1,3
 
t0,2,3
 
t1,2,3
 
t0,1,4
 
t0,2,4
 
t1,2,4
 
t0,3,4
 
t1,3,4
 
t2,3,4
 
t0,1,5
 
t0,2,5
 
t1,2,5
 
t0,3,5
 
t1,3,5
 
t0,4,5
 
t0,1,6
 
t0,2,6
 
t0,3,6
 
t0,1,2,3
 
t0,1,2,4
 
t0,1,3,4
 
t0,2,3,4
 
t1,2,3,4
 
t0,1,2,5
 
t0,1,3,5
 
t0,2,3,5
 
t1,2,3,5
 
t0,1,4,5
 
t0,2,4,5
 
t1,2,4,5
 
t0,3,4,5
 
t0,1,2,6
 
t0,1,3,6
 
t0,2,3,6
 
t0,1,4,6
 
t0,2,4,6
 
t0,1,5,6
 
t0,1,2,3,4
 
t0,1,2,3,5
 
t0,1,2,4,5
 
t0,1,3,4,5
 
t0,2,3,4,5
 
t1,2,3,4,5
 
t0,1,2,3,6
 
t0,1,2,4,6
 
t0,1,3,4,6
 
t0,2,3,4,6
 
t0,1,2,5,6
 
t0,1,3,5,6
 
t0,1,2,3,4,5
 
t0,1,2,3,4,6
 
t0,1,2,3,5,6
 
t0,1,2,4,5,6
 
t0,1,2,3,4,5,6

See also

edit

Notes

edit
  1. ^ Klitizing, (x3o3x3o3o3o3o - saro)
  2. ^ Klitizing, (o3x3o3x3o3o3o - sabro)
  3. ^ Klitizing, (o3o3x3o3x3o3o - stiroh)
  4. ^ Klitizing, (x3x3x3o3o3o3o - garo)
  5. ^ Klitizing, (o3x3x3x3o3o3o - gabro)
  6. ^ Klitizing, (o3o3x3x3x3o3o - gatroh)

References

edit
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "7D uniform polytopes (polyexa)". x3o3x3o3o3o3o - saro, o3x3o3x3o3o3o - sabro, o3o3x3o3x3o3o - stiroh, x3x3x3o3o3o3o - garo, o3x3x3x3o3o3o - gabro, o3o3x3x3x3o3o - gatroh
edit
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds