Bissulfosuccinimidyl suberate

Bissulfosuccinimidyl suberate (BS3) is a crosslinker used in biological research. It is a water-soluble version of disuccinimidyl suberate.[1]

Bissulfosuccinimidyl suberate
Names
IUPAC name
1-[8-(2,5-Dioxo-3-sulfopyrrolidin-1-yl)oxy-8-oxooctanoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid
Other names
Disulfosuccinimidyl suberate; Bis(sulfosuccinimidyl)suberate; BS3
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.110.895 Edit this at Wikidata
UNII
  • InChI=1S/C16H20N2O14S2/c19-11-7-9(33(25,26)27)15(23)17(11)31-13(21)5-3-1-2-4-6-14(22)32-18-12(20)8-10(16(18)24)34(28,29)30/h9-10H,1-8H2,(H,25,26,27)(H,28,29,30) ☒N
    Key: VYLDEYYOISNGST-UHFFFAOYSA-N ☒N
  • InChI=1/C16H20N2O14S2/c19-11-7-9(33(25,26)27)15(23)17(11)31-13(21)5-3-1-2-4-6-14(22)32-18-12(20)8-10(16(18)24)34(28,29)30/h9-10H,1-8H2,(H,25,26,27)(H,28,29,30)
    Key: VYLDEYYOISNGST-UHFFFAOYAE
  • C1C(C(=O)N(C1=O)OC(=O)CCCCCCC(=O)ON2C(=O)CC(C2=O)S(=O)(=O)O)S(=O)(=O)O
Properties
C16H20N2O14S2
Molar mass 528.46 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Crosslinkers

edit

Crosslinkers are chemical reagents that play a crucial role in the preparation of conjugates used in biological research particularly immuno-technologies and protein studies. Crosslinkers are designed to covalently interact with molecules of interest, resulting in conjugation.[2] A spacer arm, generally consisting of several atoms, separates the two molecules, and the nature and length of this spacer is important to consider when designing an assay involving the selected crosslinker. Bissulfosuccinimidyl suberate is an example of a homobifunctional crosslinker.[3]

Characteristics

edit

Water-soluble: BS3 is hydrophilic due to its terminal sulfonyl substituents and as a result dissociates in water, eliminating the need to use organic solvents which interfere with protein structure and function.[4] Because organic solvents need not be used when BS3 is used as the crosslinker, it is ideal for investigations into protein structure and function in physiologic conditions.[5][3]

Non-cleavable: The BS3 crosslinker has an 8-atom spacer is non-cleavable and the molecule is not cell membrane permeable. BS3 binds irreversibly to its conjugate molecules, meaning that once BS3 creates covalent linkages to its target molecules, those associations are not easily broken.[6]

Membrane impermeable: Since BS3 is a charged molecule, it cannot freely pass through cellular membranes which makes it an ideal crosslinker for cell surface proteins.[7]

Homobifunctional: BS3 is a homobifunctional crosslinker in that it has two identical reactive groups, i.e. the N-hydroxysulfosuccinimide (sulfo-NHS) esters, and only one step is necessary to establish crosslinking between conjugate molecules.[8]

Amine reactive: BS3 is amine-reactive in that its N-hydroxysulfosuccinimide (NHS) esters at each end react specifically with primary amines to form stable amide bonds in a nucleophilic acyl substitution-type reaction in which the N-hydroxysulfosuccinimide acts as the leaving group.[9] BS3 is particularly useful in protein-related applications in that it can react with the primary amines on the side chain of lysine residues and the N-terminus of polypeptide chains.[10] This crosslinker can also be used to stabilize protein-protein interactions for further analysis by immunoprecipitation[11] or crosslinking mass spectroemtry.[12]

Deuterated BS3

edit

The deuterated crosslinker bis(sulfosuccinimidyl) 2,2,7,7-suberate-d4 is the "heavy" BS3 crosslinking agent that contains 4 deuterium atoms. When used in mass spectrometry studies, BS3-d4 provides a 4 dalton shift compared to crosslinked proteins with the non-deuterated analog (BS3-d0).[13] Thus, "heavy" and "light" crosslinker analogs can be used for isotopically labeling protein and peptides in mass spectrometry research applications.[14]

Applications

edit
  • Cell-surface receptor-ligand studies[citation needed]
  • Crosslinking biomolecules on cells[citation needed]
  • Fixation of protein complexes prior to protein interaction analysis[15]

Disuccinimidyl suberate

edit

Disuccinimidyl suberate (DSS) is the non-water-soluble analog of BS3. DSS and BS3 express the same crosslinking ability toward primary amines.[16] The major structural difference between these two molecules is that DSS does not contain the sulfonate substituents at either end of the molecule, and it is this difference that is responsible for the uncharged, non-polar nature of the DSS molecule.[17] Due to the hydrophobic nature of this crosslinker it must be dissolved in an organic solvent such as dimethylsulfoxide before being added to an aqueous sample. Because of the ability of DSS to cross cell membranes, it is best suited for applications where intracellular crosslinking is needed.[18]

 
Chemical structure of disuccinimidyl suberate

References

edit
  1. ^ Shi, Jing-Ming; Pei, Jie; Liu, En-Qi; Zhang, Lin (2017). "Bis(sulfosuccinimidyl) suberate (BS3) crosslinking analysis of the behavior of amyloid-β peptide in solution and in phospholipid membranes". PLOS ONE. 12 (3): e0173871. Bibcode:2017PLoSO..1273871S. doi:10.1371/journal.pone.0173871. ISSN 1932-6203. PMC 5360245. PMID 28323849.
  2. ^ Arora, Bharti; Tandon, Rashmi; Attri, Pankaj; Bhatia, Rohit (2017). "Chemical Crosslinking: Role in Protein and Peptide Science". Current Protein & Peptide Science. 18 (9): 946–955. doi:10.2174/1389203717666160724202806. ISSN 1875-5550. PMID 27455969.
  3. ^ a b Shao, Jiahui (2016), "Spacer Arm Length", in Drioli, Enrico; Giorno, Lidietta (eds.), Encyclopedia of Membranes, Berlin, Heidelberg: Springer, pp. 1805–1806, doi:10.1007/978-3-662-44324-8_1244, ISBN 978-3-662-44324-8, retrieved 2022-12-31
  4. ^ Verma, Vishal; Rico-Martinez, Roberto; Kotra, Neel; King, Laura; Liu, Jiumeng; Snell, Terry W.; Weber, Rodney J. (2012-10-16). "Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols". Environmental Science & Technology. 46 (20): 11384–11392. Bibcode:2012EnST...4611384V. doi:10.1021/es302484r. ISSN 1520-5851. PMID 22974103.
  5. ^ Ukai, H.; Inui, S.; Takada, S.; Dendo, J.; Ogawa, J.; Isobe, K.; Ashida, T.; Tamura, M.; Tabuki, K.; Ikeda, M. (1997). "Types of organic solvents used in small- to medium-scale industries in Japan; a nationwide field survey". International Archives of Occupational and Environmental Health. 70 (6): 385–392. Bibcode:1997IAOEH..70..385U. doi:10.1007/s004200050233. ISSN 0340-0131. PMID 9439984. S2CID 46697306.
  6. ^ Dorywalska, Magdalena; Strop, Pavel; Melton-Witt, Jody A.; Hasa-Moreno, Adela; Farias, Santiago E.; Galindo Casas, Meritxell; Delaria, Kathy; Lui, Victor; Poulsen, Kris; Sutton, Janette; Bolton, Gary; Zhou, Dahui; Moine, Ludivine; Dushin, Russell; Tran, Thomas-Toan (2015). "Site-Dependent Degradation of a Non-Cleavable Auristatin-Based Linker-Payload in Rodent Plasma and Its Effect on ADC Efficacy". PLOS ONE. 10 (7): e0132282. Bibcode:2015PLoSO..1032282D. doi:10.1371/journal.pone.0132282. ISSN 1932-6203. PMC 4498778. PMID 26161543.
  7. ^ Cooper, Geoffrey M. (2000). "Cell Membranes". The Cell: A Molecular Approach. 2nd Edition. 2 (1) – via National Library of Medicine.
  8. ^ Webb, Ian K.; Mentinova, Marija; McGee, William M.; McLuckey, Scott A. (2013). "Gas-phase intramolecular protein crosslinking via ion/ion reactions: ubiquitin and a homobifunctional sulfo-NHS ester". Journal of the American Society for Mass Spectrometry. 24 (5): 733–743. Bibcode:2013JASMS..24..733W. doi:10.1007/s13361-013-0590-4. ISSN 1879-1123. PMC 3644013. PMID 23463545.
  9. ^ Miller, B. T.; Collins, T. J.; Rogers, M. E.; Kurosky, A. (1997). "Peptide biotinylation with amine-reactive esters: differential side chain reactivity". Peptides. 18 (10): 1585–1595. doi:10.1016/s0196-9781(97)00225-8. ISSN 0196-9781. PMID 9437720. S2CID 34633991.
  10. ^ Abello, Nicolas; Kerstjens, Huib A. M.; Postma, Dirkje S.; Bischoff, Rainer (November 15, 2007). "Selective acylation of primary amines in peptides and proteins". Journal of Proteome Research. 6 (12): 4770–4776. doi:10.1021/pr070154e. ISSN 1535-3893. PMID 18001078.
  11. ^ Tang, Xiaoting; Bruce, James E. (2009). "Chemical Cross-Linking for Protein–Protein Interaction Studies". Mass Spectrometry of Proteins and Peptides. Methods in Molecular Biology. Vol. 492. pp. 283–293. doi:10.1007/978-1-59745-493-3_17. ISBN 978-1-934115-48-0. ISSN 1064-3745. PMID 19241040.
  12. ^ Chen, Zhuo Angel; Rappsilber, Juri (2023-06-01). "Protein structure dynamics by crosslinking mass spectrometry". Current Opinion in Structural Biology. 80: 102599. doi:10.1016/j.sbi.2023.102599. ISSN 0959-440X. PMID 37104977. S2CID 258351030.
  13. ^ Barth, Marie; Schmidt, Carla (2021), Marcus, Katrin; Eisenacher, Martin; Sitek, Barbara (eds.), "Quantitative Cross-Linking of Proteins and Protein ComplexesProteinscomplexes", Quantitative Methods in Proteomics, vol. 2228, New York, NY: Springer US, pp. 385–400, doi:10.1007/978-1-0716-1024-4_26, ISBN 978-1-0716-1024-4, PMID 33950504, S2CID 233743850
  14. ^ Fernández-Quintero, Monica L.; Kroell, Katharina B.; Grunewald, Lukas J.; Fischer, Anna-Lena M.; Riccabona, Jakob R.; Liedl, Klaus R. (2022). "CDR loop interactions can determine heavy and light chain pairing preferences in bispecific antibodies". mAbs. 14 (1): 2024118. doi:10.1080/19420862.2021.2024118. ISSN 1942-0870. PMC 8803122. PMID 35090383.
  15. ^ Lenz, Swantje; Sinn, Ludwig R.; O’Reilly, Francis J.; Fischer, Lutz; Wegner, Fritz; Rappsilber, Juri (2021-06-11). "Reliable identification of protein-protein interactions by crosslinking mass spectrometry". Nature Communications. 12 (1): 3564. Bibcode:2021NatCo..12.3564L. doi:10.1038/s41467-021-23666-z. ISSN 2041-1723. PMC 8196013. PMID 34117231.
  16. ^ DeCaprio, James; Kohl, Thomas O. (2019-02-01). "Cross-Linking Antibodies to Beads with Disuccinimidyl Suberate (DSS)". Cold Spring Harbor Protocols. 2019 (2): pdb.prot098632. doi:10.1101/pdb.prot098632. ISSN 1559-6095. PMID 30710026. S2CID 73441959.
  17. ^ "Alkenes". Angelo State University. Archived from the original on 2022-12-31. Retrieved 2022-12-31.
  18. ^ Owais, A.; Khaled, M.; Yilbas, B. S. (2017-01-01), Hashmi, MSJ (ed.), "3.9 Hydrophobicity and Surface Finish", Comprehensive Materials Finishing, Oxford: Elsevier, pp. 137–148, ISBN 978-0-12-803249-7, retrieved 2022-12-31