Bitruncated 16-cell honeycomb | |
---|---|
(No image) | |
Type | Uniform honeycomb |
Schläfli symbol | t1,2{3,3,4,3} h2,3{4,3,3,4} 2t{3,31,1,1} |
Coxeter-Dynkin diagram | = = |
4-face type | Truncated 24-cell Bitruncated tesseract |
Cell type | Cube Truncated octahedron Truncated tetrahedron |
Face type | {3}, {4}, {6} |
Vertex figure | |
Coxeter group | = [3,3,4,3] = [4,3,31,1] = [31,1,1,1] |
Dual | ? |
Properties | vertex-transitive |
In four-dimensional Euclidean geometry, the bitruncated 16-cell honeycomb (or runcicantic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.
Symmetry constructions
editThere are 3 different symmetry constructions, all with 3-3 duopyramid vertex figures. The symmetry doubles on in three possible ways, while contains the highest symmetry.
Affine Coxeter group | [3,3,4,3] |
[4,3,31,1] |
[31,1,1,1] |
---|---|---|---|
Coxeter diagram | |||
4-faces | |
|
|
See also
editRegular and uniform honeycombs in 4-space:
Notes
editReferences
edit- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
- Klitzing, Richard. "4D Euclidean tesselations". x3x3x *b3x *b3o, x3x3o *b3x4o, o3x3x4o3o - bithit - O107
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |