In computer algorithms, block swap algorithms swap two regions of elements of an array. It is simple to swap two non-overlapping regions of an array of equal size. However, it is not simple to swap two non-overlapping regions of an array in-place that are next to each other, but are of unequal sizes (such swapping is equivalent to array rotation). Three algorithms are known to accomplish this: Bentley's juggling (also known as dolphin algorithm [1]), Gries-Mills, and reversal algorithm.[2] All three algorithms are linear time O(n), (see Time complexity).

Reversal algorithm

edit

The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block swap:

  • Rotate region A
  • Rotate region B
  • Rotate region AB

Gries-Mills and reversal algorithms perform better than Bentley's juggling, because of their cache-friendly memory access pattern behavior.

The reversal algorithm parallelizes well, because rotations can be split into sub-regions, which can be rotated independently of others.

References

edit
  1. ^ D. Gries, H. Mills (1981), Swapping Sections
  2. ^ Jon Bentley, "Programming Pearls", pp. 13–15, 209-211.