In number theory, Bonse's inequality, named after H. Bonse,[1] relates the size of a primorial to the smallest prime that does not appear in its prime factorization. It states that if p1, ..., pnpn+1 are the smallest n + 1 prime numbers and n ≥ 4, then

(the middle product is short-hand for the primorial of pn)

Mathematician Denis Hanson showed an upper bound where .[2]

See also

edit

Notes

edit
  1. ^ Bonse, H. (1907). "Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung". Archiv der Mathematik und Physik. 3 (12): 292–295.
  2. ^ Hanson, Denis (March 1972). "On the Product of the Primes". Canadian Mathematical Bulletin. 15 (1): 33–37. doi:10.4153/cmb-1972-007-7. ISSN 0008-4395.

References

edit
  • Uspensky, J. V.; Heaslet, M. A. (1939). Elementary Number Theory. New York: McGraw Hill. p. 87.