Brain–body interaction

Brain–body interactions are patterns of neural activity in the central nervous system to coordinate the activity between the brain and body. The nervous system consists of central and peripheral nervous systems and coordinates the actions of an animal by transmitting signals to and from different parts of its body. The brain and spinal cord are interwoven with the body and interact with other organ systems through the somatic, autonomic and enteric nervous systems.[1] Neural pathways regulate brain–body interactions and allow to sense and control its body and interact with the environment.

Types of interactions

edit

Various types of brain–body interactions have been distinguished. For example, brain–gut interactions are biochemical signaling that takes place between the gastrointestinal tract and the central nervous system.[2] Brain–heart interactions link cardiac physiology to activity in the central and peripheral nervous system and may explain how peripheral cardiovascular arousal can influence decision making and the regulation of social and emotional behaviours.[3] Brain–muscle interactions involve both efferent nerve fibers that transmit action potentials to the muscles to generate muscle contractions and afferent nerve fibers that transmit somatosensory information back to the central nervous system.[4]

Brain–body networks

edit

Interactions between brain regions have been studied using functional connectivity analysis. Resting state fMRI has shown that brain activity in different brain areas are coupled and form brain networks that can be studied using graph theory.[5] Brain–body interactions can be studied using a similar approach by estimating functional connectivity between brain activity and peripheral electrophysiology, for example between brain activity and ECG,[6][7] EGG[8] or EMG activity.[9] Synchrony between slow pulse fluctuations (related to sympathetic activity) and brain fMRI signal has revealed a network of sensory brain regions that appear to be relevant for characterizing human personality and emotions.[10] These analyses can be extended to investigate interactions between multiple organ systems that together form a brain–body network.[11]

The brain–body interactions are supported by peripheral nervous system that connects the CNS to the limbs and organs. These structural connections can be mapped using neuroimaging techniques such as diffusion MRI to map the complete human connectome.[12]

References

edit
  1. ^ Freund, Patrick; Friston, Karl; Thompson, Alan J.; Stephan, Klaas E.; Ashburner, John; Bach, Dominik R.; Nagy, Zoltan; Helms, Gunther; Draganski, Bogdan (2016). "Embodied neurology: an integrative framework for neurological disorders". Brain: A Journal of Neurology. 139 (Pt 6): 1855–1861. doi:10.1093/brain/aww076. ISSN 1460-2156. PMC 4892755. PMID 27105896.
  2. ^ Mayer, Emeran A.; Knight, Rob; Mazmanian, Sarkis K.; Cryan, John F.; Tillisch, Kirsten (2014-11-12). "Gut microbes and the brain: paradigm shift in neuroscience". The Journal of Neuroscience. 34 (46): 15490–15496. doi:10.1523/JNEUROSCI.3299-14.2014. ISSN 1529-2401. PMC 4228144. PMID 25392516.
  3. ^ Critchley, H. D.; Corfield, D. R.; Chandler, M. P.; Mathias, C. J.; Dolan, R. J. (2000-02-15). "Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans". The Journal of Physiology. 523 Pt 1 (Pt 1): 259–270. doi:10.1111/j.1469-7793.2000.t01-1-00259.x. ISSN 0022-3751. PMC 2269796. PMID 10673560.
  4. ^ Latash, Mark L. (2013). Fundamentals of motor control. [Place of publication not identified]: Academic Press. ISBN 9780124159563. OCLC 796936824.
  5. ^ Bullmore, Ed; Sporns, Olaf (2009). "Complex brain networks: graph theoretical analysis of structural and functional systems". Nature Reviews. Neuroscience. 10 (3): 186–198. doi:10.1038/nrn2575. ISSN 1471-0048. PMID 19190637. S2CID 205504722.
  6. ^ Chang, Catie; Metzger, Coraline D.; Glover, Gary H.; Duyn, Jeff H.; Heinze, Hans-Jochen; Walter, Martin (2013). "Association between heart rate variability and fluctuations in resting-state functional connectivity". NeuroImage. 68: 93–104. doi:10.1016/j.neuroimage.2012.11.038. ISSN 1095-9572. PMC 3746190. PMID 23246859.
  7. ^ Faes, L.; Marinazzo, D.; Jurysta, F.; Nollo, G. (2015). "Linear and non-linear brain-heart and brain-brain interactions during sleep". Physiological Measurement. 36 (4): 683–698. Bibcode:2015PhyM...36..683F. doi:10.1088/0967-3334/36/4/683. ISSN 1361-6579. PMID 25799205. S2CID 29397558.
  8. ^ Rebollo, Ignacio; Devauchelle, Anne-Dominique; Béranger, Benoît; Tallon-Baudry, Catherine (2018-03-21). "Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans". eLife. 7. doi:10.7554/eLife.33321. ISSN 2050-084X. PMC 5935486. PMID 29561263.
  9. ^ Mima, T.; Hallett, M. (1999). "Corticomuscular coherence: a review". Journal of Clinical Neurophysiology. 16 (6): 501–511. doi:10.1097/00004691-199911000-00002. ISSN 0736-0258. PMID 10600018.
  10. ^ Shokri-Kojori, Ehsan; Tomasi, Dardo; Volkow, Nora D (2018). "An Autonomic Network: Synchrony Between Slow Rhythms of Pulse and Brain Resting State Is Associated with Personality and Emotions". Cerebral Cortex. 28 (9): 3356–3371. doi:10.1093/cercor/bhy144. ISSN 1047-3211. PMC 6095212. PMID 29955858.
  11. ^ Bashan, Amir; Bartsch, Ronny P.; Kantelhardt, Jan W.; Havlin, Shlomo; Ivanov, Plamen Ch (2012-02-28). "Network physiology reveals relations between network topology and physiological function". Nature Communications. 3: 702. arXiv:1203.0242. Bibcode:2012NatCo...3..702B. doi:10.1038/ncomms1705. ISSN 2041-1723. PMC 3518900. PMID 22426223.
  12. ^ Irimia, Andrei; Van Horn, John Darrell (2020-11-04). "Mapping the Rest of the Human Connectome: Atlasing the Spinal Cord and Peripheral Nervous System". NeuroImage. 225: 117478. doi:10.1016/j.neuroimage.2020.117478. ISSN 1053-8119. PMC 8485987. PMID 33160086.