The Budoš Limestone ("Budos Mountain Limestone", also known simply as High Karst Bioclastic limestones[2]) is a geological formation in Montenegro and maybe Albania, dating to 192-182 million years ago, and covering the Pliensbachian-Toarcian stage of the Jurassic Period. It is located within the High karst zone, and represents a unique terrestrial setting with abundant plant material, one of the few know from the Toarcian of Europe.[3] It is the regional equivalent to the Toarcian-Aalenian units of Spain such as the Turmiel Formation and the El Pedregal Formation, the Sinemurian Coimbra Formation in Portugal, units like the Aganane Formation or the Tafraout Group of Morocco and others from the Mediterranean such as the Posidonia Beds of Greece and the Marne di Monte Serrone of Italy.[4] In the Adriatic section, this unit is an equivalent of the Calcare di Sogno of north Italy, as well represents almost the same type of ecosystem recovered in the older (Pliensbachian) Rotzo Formation of the Venetian region and the Podpeč Limestone of Slovenia, know also for its rich floral record.[5]

Budoš Limestone
Stratigraphic range: Pliensbachian-Lower Toarcian
~192–182 Ma
Rumija, where the southernmost Budoš Limestone emerges
TypeGeological formation
Thickness50–60 m (160–200 ft)[1]
Lithology
PrimaryLimestones alternated with green marls and calcareous stone
OtherLithified limestone
Location
Coordinates42°59′30″N 18°54′20″E / 42.99167°N 18.90556°E / 42.99167; 18.90556
RegionNikšić
Country
Type section
Named forBudoš Mountain
Named byPantić
Year defined1952[1]
Budoš Limestone is located in Montenegro
Budoš Limestone
Budoš Limestone (Montenegro)

Description

edit

In Montenegro, Lower Jurassic carbonate deposits are seen intermittently along the Adriatic Carbonate Platform extending from Herzegovina into the region and reaching northern Albania. The Toarcian paleogeography of Montenegro was characterised by two major units, mostly found in the Dinarides: the High Karst Zone, representing the Carbonate Platform, and the Budva Basin, that represented a shallow marine setting where ammonites are abundant, separated at the W of the Apulian Carbonate Platform by the "deep-water Adriatic Basin".[6] The previous Pliensbachian platform suffered in the Toarcian a partial flooding in some sectors and simultaneous emergence in others, with the carbonate facies recovered at W of Nikšić, NE of Podgorica and in the Rumija Mt remaining as environments close to the marginal part.[4] These layers, generally overlaid by younger sediments, exhibit oolitic limestone characteristics, with late-diagenetic dolomite intercalations indicative of formation near the platform's margin. Key exposures appear west of Nikšić, northeast of Podgorica, and within the Rumija Mountain range.[4][6]

While at the Pliensbachian most of the area was dominated by the "Lithiothis Facies" from Tolmin to Podgorica, with no proper emegent lands nearby, in the Toarcian the nearest emergent lands expanded were located at the NE-SE, from the west of Zagreb to Prozor, while the sectors at Montenegro and Albania were located in between ooid grainstone levels, representing a proximal carbonate ramp.[4] The Budva basin evolution in the Toarcian was marked by the changes in the sea level, developing a distally steepened ramp until the Lower Toarcian, and an accretionary rimmed platform in younger layers.[7] The Adriatic-Dinaric Carbonate Platform is well measured at the Mount Rumija where the transitional facies between the platform setting and the deeper pelagic environment is seen, recovering a lateral transition from a lagoonal environment exposed in Seoce to the platform edge, exposed in Tejani (called Tejani section), and finally the deeper water environment, called Livari section can be observed at the own Mount Rumija.[8]

The Seoce Section is likely linked with the Budoš Limestone depositional setting, found mostly on the mountain of the same name on the Dinarides near Nikšić. The main unit is lithologically almost identical to the major fossiliferous levels of the Rotzo Formation, composed by bituminous limestones and marly limestones (fenestrate limestones and tempestites) with several episodes of emersions, all of coastal origin and rich in plant detritus and leaf remains, connected to the typical Lithiotis reefs found in the Pliensbachian-Toarcian carbonate platforms in the Adriatic region.[5] The Budoš Limestone was delimited as younger than the Rotzo Formation due to its floral composition and the fact is overlain by the Late Toarcian-Aalenian greenish local claystone-limestone layers.[5]

The unit is mostly known by its rich macroflora, the most complete of the Mediterranean Toarcian realm along with the Marne di Monte Serrone, with several characteristics, such as the abundant presence of thermophilic Bennettitales and the dominance of the Seed Fern Pachypteris, that grew on semi-arid climates.[9] This particular province is characterized by fossil plants that belonged to the specific vegetation of intra-oceanic islands with the dominance of "Mangrove" type swamps were Pachypteris dominated, and drier vegetation within the island regions of "Maquis shrubland" type (probably a number of species of the genera Brachyphyllum and Pagiophylum).[10] Most of the research of the flora was done by Pantic between 1952 & 1981, recovering abundant Macroflora and Palynomorphs. Several other genera were recovered, such as Coniopteris (Dicksoniaceae), Caytonia (Caytoniales), Lindleycladus (Krassiloviaceae) and Elatides (Taxodiaceae).[10] The nearest emgerged areas were present in the terrains of Sinjavina and Durmitor, marked by a paleorelief of Jurassic Bauxite-abundant deposits within karstified limestones and rare dolomites.[11]

Ecosystem

edit
The Budoš Limestone was developed in a coastal setting with marine ingressions, likely a Mangrove-type environment (ex. with modern plants from Indonesia). Inland vegetation was probably dominated by Maquis shrubland (ex. with modern plants from from Italy). The marine biota comes from a shallow Carbonate Platform sea, similar to modern Bahamas.

It was considered initially that this flora grew in a continental setting, appearing on deposits that resemble modern inland deposition on ferric soils, thus, in a large inland valley with semi-arid conditions but with nearby large water bodies such as lakes.[12] Latter however, was interpreted that this flora developed on an island setting in the Dinaric Carbonate Platform, likely linked with the exposed layers of Seoce. This setting would be made of the emerged Budoshi High, representing an island flora; a humid belt would have existed along the shore, while coniferous vegetation would have prevailed in the drier interior.[13] The Budoš flora, as well Rumija and Seoce lithiotis facies were made after the Livari Supersequence created a massive lagoon in the inner ramp.[7] A common facies in the 3 locations shows about 1-2 m thick lagoon parasequences, from lithiotis rich subtidal packstone to shallower wackestone, where the lagoonal shale facies recovering the flora is deposited.[7]

The main consensus is that the layers rich in flora belong to a Bahamian-type Mangrove system developed on a coastal setting with a nearby Macchia arid inland setting dominated by Hirmeriellaceae and Araucariaceae conifers, as well Bennettites, that was either an island inside a Carbonate platform or part of a larger landmass.[12] The mangrove system was mostly composed of seed ferns bearing the leaf genus Pachypteris linked with complex root systems that cover most of the layers, developed over and linked with the local aberrant bivalve (Lithiotis) reefs, together developed as a belt around the coast, yet is unknown how far reached.[12] The inland setting was dry and with common wildfire activity, as proven by the great amount of charcoal recovered in some of the layers.[12] The Lithiotis layers are intercalated by oolitic and oncolitic layers of likely subtidal/lagoonal origin, with several coastal cycles measured, such as development of lagoons and complete flooding of the vegetation levels, as well small coal-dominated sections. The ingression-regression trend allowed the development of the local mangroves.[12]

The same type of ecosystem was also recovered more recently on slightly older (Late Pliensbachian) rocks on Albania that may belong to the same unit, with also great dominance of the genus Pachypteris linked with root systems along Lithiotis reefs, with evidence of catastrophic events which “killed” the flora.[14] These types of layers have been vinculated with the early evolution of crabs.[15]

Fossil content

edit
Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.

Brachiopoda

edit
Genus Species Stratigraphic position Material Notes Images
Cuneirhynchia[16]
  • C. dalmasi
  • Livari, Rumija
Isolated Shells A Rhynchonellidan brachiopoda, member of Prionorhynchiidae
Livarirhynchia[17]
  • L. rajkae
  • Livari, Rumija
Isolated Shells A Rhynchonellidan brachiopoda, member of Allorhynchidae
Homoeorhynchia[17]
  • H. lubrica
  • Livari, Rumija
Isolated Shells A Rhynchonellidan brachiopoda, member of Rhynchonellidae
Prionorhynchia[16][17]
  • P. fraasi
  • Livari, Rumija
Isolated Shells A Rhynchonellidan brachiopoda, member of Prionorhynchiidae
Rhapidothyris[17]
  • R. sp.
  • Livari, Rumija
Isolated Shells A Terebratulidan brachiopoda, member of Lobothyrididae
Sepkoskirhynchia[18]
  • S. sphaerica
  • Livari, Rumija
Isolated Shells A Rhynchonellidan brachiopoda, member of Basiliolidae
Skadarirhynchia[16]
  • S. semicostata
  • Livari, Rumija
Isolated Shells A Rhynchonellidan brachiopoda, member of Basiliolidae

Bivalves

edit

The Budos Mountain facies, like the Rotzo Formation, the Podpeč Limestone or the Aganane Formation, are known mostly due to its massive bivalve associations of the genera Lithiotis, Cochlearites and Lithioperna that extended all along the Pliensbachian-Toarcian Adriatic-Dinaric-Hellenic Platforms forming mass accumulations of specimens that formed Reef-Like structures.[19] This fauna appeared after the early Pliensbachian C-cycle perturbation, that triggered the diffusion of the Lithiotis Fauna, noted on the rapid widespread of this biota after the event layers.[19] All of the genera related with this fauna appeared on the lower Jurassic, and all but one became extinct before the Middle Jurassic.[20] This "Reefs" had a strong zonation, starting with the bivalves Gervilleioperna and Mytiloperna, restricted to intertidal and shallow-subtidal facies. Lithioperna is limited to lagoonal subtidal facies and even in some low-oxygen environments. Finally Lithiotis and Cochlearites are found in subtidal facies, constructing buildups.[20]

Genus Species Stratigraphic position Material Notes Images

Cochlearites[1][21]

  • C. loppianus
  • Budos Mountain
  • Livari, Rumija
  • Seoce
  • Tejani

Isolated & acummulated Shells

An oyster, member of Plicatostylidae inside Ostreida. A large bivalve, with a subequivalved shell, up to 60–70 cm high. It is one of the Three main bivalves recovered on the Lithiotis Facies, with its accumulations generally overlying megalodontid coquinas.[22]

Gervilleioperna[1][21]

  • G. ombonii
  • G. sp.
  • Budos Mountain
  • Livari, Rumija
  • Seoce

Isolated & acummulated Shells

An oyster, member of Plicatostylidae inside Ostreida.

Lithioperna[1][21]

  • L. (Lithiopedalion) kuehni
  • L. scutata
  • L. spp.
  • Budos Mountain
  • Livari, Rumija
  • Seoce
  • Tejani

Isolated & acummulated Shells

An oyster, member of Plicatostylidae inside Ostreida.
 
Specimen of the genus

Lithiotis[1][21]

  • L. problematica
  • L. sp.
  • Budos Mountain
  • Livari, Rumija
  • Seoce

Isolated & acummulated Shells

An oyster, member of Plicatostylidae inside Ostreida. Large, large and aberrant bivalves, it´s accumulation have had different denominations on literature, such as banks, bioherms, biostromes, bivalve reefs or bivalve mounds.[23]
Manticula[21]
  • M. problematica
  • Budos Mountain
Isolated Shells An oyster, member of the family Pergamidiidae inside Ostreida.

Mytiloperna[1][21]

  • M. lepsii
  • Budos Mountain
  • Livari, Rumija
  • Seoce

Isolated Shells

An Oyster, member of the family Malleidae inside Ostreida.

Echinodermata

edit
Genus Species Location Material Notes Images
Cotylederma[24]
  • C. sp.
Tejani Multiple ossicles An Crinoidean, member of the family Cotyledermatidae
Isocrinus[24]
  • I. psilonoti
  • I. spp.
Tejani Multiple ossicles An Crinoidean, member of the family Isocrininae
Pentacrinites[24]
  • P. cf. fossilis
Tejani Sections An Crinoidean, member of the family Pentacrinitidae
 

Palynology

edit
Genus Species Stratigraphic position Material Notes Images

Aratrisporites[10]

  • A. sp
  • Budos Mountain

Miospores

Affinities with Isoetaceae inside Lycophyta, as was found associated with the genus Pleuromeia.[25]

Bennettiteaepollenites[10]

  • B. sp.

Pollen

Affinities with Bennettitaceae inside Bennettitales. Abundant and Dry environment indicator

Calamospora[10]

  • C. sp.

Miospores

Affinities with the Calamitaceae inside Neocalamitaceae. Horsetail spores, associated with the genus Equisetostachys, herbaceous flora related to riparian high humid environments.[25]

 
Recosntruction of the Genus Calamites, found associated with Calamospora

Callialasporites[10]

  • C. sp.

Pollen

Affinities with the family Araucariaceae inside Pinales. comparable to the in situ pollen of Apterocladus.[25]

 
Extant Araucaria. Callialasporites maybe came from a related plant

Cerebropollenites[10]

  • C. macroverrucosus

Pollen

Affinities with both Sciadopityaceae and Miroviaceae inside Pinopsida. This Pollen resemblance with extant Sciadopitys suggest that Miroviaceae can be an extinct lineage of sciadopityaceaous-like plants.[26]

 
Extant Sciadopitys. Cerebropollenites likely come from a related plant

Classopollis[10]

  • C. cf. chateaunovi
  • C. "sp. A"
  • C. "sp. B"
  • C. "sp. C"
  • C. meyeriana
  • C. cf. simplex

Pollen

Affinities with the Hirmeriellaceae inside Pinopsida. The Pollen of the cone genus Classostrobus. Dominant Palynological residue, either indicator of dry conditions or association with coastal settings.[25]

Concavisporites[10]

  • C. cf. kaiseri
  • C. "sp. A"
  • C. "sp. B"
  • C. cf. Gleichenia unbonatus

Miospores

Affinities with the genus Gleichenia inside Gleicheniaceae. Tropical Ferns related to humid ferric soils.

 
Example of extant Gleichenia, Concavisporites come probably from similar genera

Cycadopites[10]

  • C. "sp. A"
  • C. "sp. B"
  • C. cf. follicularis

Pollen

Affinities with the family Cycadaceae inside Cycadales. It has been found in situ in cycadalean, bennettitalean, and ginkgoalean plants.[25]

 
Extant Cycas platyphylla. Cycadopites maybe come from a related plant

Deltoidospora[10]

  • D. minor

Miospores

Uncertain Fern Miospores whose affinity cannot be concreted beyond Pteridophytes.

Densoisporites[10]

  • D. "sp. A"
  • D. "sp. B"
  • D. "sp. C"

Miospores

Affinities with Isoetaceae inside Lycophyta, as was found associated with the genus Pleuromeia.[25]

Duplexisporites[10]

  • D. problematicus

Miospores

Affinities with the family Cibotiaceae inside Cyatheales. Arboreal Fern Spores, resembling the ones found in the genus Cibotium.[25]

 
Example of extant Cibotium

Foveosporites[10]

  • F. vissheri
  • F. sp."

Miospores

Affinities with the family Lycopodiaceae inside Lycopodiopsida. Lycopod spores, whose appearance resemble the ones recovered on modern Lycopodium clavatum.[25]

 
Extant Lycopodium specimens.

Granulatisporites[10]

  • G. "sp. A"
  • G. "sp. B"
  • G. "sp. C"

Miospores

Affinities with Dipteridaceae inside Pteridophyta. Fern spores related to freshwater ponds.

 
Example of extant Dipteris specimens, Granulatisporites come probably from similar genera

Ischyosporites[10]

  • I. sp.

Miospores

Uncertain Fern Miospores whose affinity cannot be concreted beyond Pteridophytes.

Klukisporites[10]

  • K. variegatus
  • K. neovariegatus

Miospores

Affinities with the family Selaginellaceae inside Lycopsida. The Klukia type isospore.[25]

Leptolepidites[10]

  • L. macroverrucosus
  • L. cf. crassibalteus

Miospores

Affinities with the family Dennstaedtiaceae inside Polypodiales. Forested areas Fern Spores

 
Example of extant Dennstaedtia specimens, Leptolepidites come probably from similar genera

Matonisporites[10]

  • M. cf. phlebopteroides

Miospores

Affinities with the genus Matoniaceae inside Gleicheniales. Ferns of several sizes, from both dry land and near water environments. It resembles the spores of the extant Gleichenia dicarpa.[25]

Monolites[10]

  • M. couperi

Miospores

Affinities with the Polypodiaceae inside Polypodiales. Ferns of several sizes, from both dry land and near water environments.

 
Example of extant Drynaria specimens, Leptolepidites come probably from similar genera

Murospora[10]

  • M. cf. bicolateralis

Miospores

Uncertain Fern Miospores whose affinity cannot be concreted beyond Pteridophytes.

Nannoceratopsis[10]

  • N. cf. gracilis

Cysts

A Dinoflajellate, member of the family Nannoceratopsiaceae. It is a genus related with Marine deposits.

Obtusisporites[10]

  • O. sp

Miospores

Affinities with the family Cyatheaceae inside Cyatheales. Arboreal Fern Spores

Pityosporites[10]

  • P. sp

Pollen

Affinities with the family Pinaceae inside Pinopsida. Conifer pollen from medium to large arboreal plants

 
Extant Tsuga Cone, example of the Abietoideae. Pinaceae Pollen like Pityosporites likely come from a similar plant

Podocarpidites[10]

  • P. sp.

Pollen

Affinities with the Podocarpaceae inside Pinopsida. Conifer pollen from medium to large arboreal plants

 
Extant Podocarpus. Podocarpidites maybe come from a related plant

Porcellispora[10]

  • P. longdonensis

Miospores

Dubious Genus with affinities with Bryophyta

Scrinocassis[10]

  • S. sp.

Miospores

Dubious Genus with affinities with Scriniocassiaceae. Brackish Green Algae, related to lagoonar water bodies

Skarbysporites[10]

  • S. sp.

Miospores

Uncertain Fern Miospores whose affinity cannot be concreted beyond Pteridophytes.

Styxisporites[10]

  • S. sp

Miospores

Uncertain Fern Miospores whose affinity cannot be concreted beyond Pteridophytes.

Verrucosisporites[10]

  • V. "sp. A"
  • V. "sp. B"

Miospores

Uncertain Fern Miospores whose affinity cannot be concreted beyond Pteridophytes.

Vitreisporites[10]

  • V. pallidus

Pollen

Pollen from the Family Caytoniaceae inside Caytoniales. Pollen found associated with Caytonanthus.[25]

Macroflora

edit
Genus Species Location Material Notes Images

Brachyphyllum[1][10]

  • B. crucis
  • Budos Mountain

Branched shoots

Affinities with Araucariaceae or Hirmeriellaceae inside Pinales.

 
Example of Brachyphyllum specimen

Coniopteris[1][10]

  • C. sp.

Isolated pinnae

A Fern of the family Polypodiales inside Polypodiidae. Common cosmopolitan Mesozoic fern genus. Recent research has reinterpreted it a stem group of the Polypodiales (Closely related with the extant genera Dennstaedtia, Lindsaea, and Odontosoria).[27]

 
Coniopteris specimen

Caytonia[1][10]

  • C. sp.

Pollen Organs

Affinities with Caytoniales inside Peltaspermopsida. Reproductive organ of the Peltaspermales, with berry like cupules with numerous small seeds arrayed along axes.

Equisetites[1][10]

  • E. columnaris
  • E. sp.

Isolated Stems

Affinities with Equisetaceae inside Sphenopsida. Near water plants, associated with static freshwater ponds and other humid environments.

 
Example of Equisetites specimen

Elatides[1][10]

  • E. williamsoni

Branched shoots

Affinities with Cupressaceae inside Coniferales. Leaves from Arbustive to Arboreal Coniferous trees.

 
Elatides specimens

Eretmophyllum[1][10]

  • E. sp.

Branched shoots

Affinities with Ginkgoales inside Ginkgoopsida. Ginko Relatives with a more wider leaf, representing among the best specimens found on the mediterranean realm.

Lindleycladus[1][10]

  • L. lanceolatus

Branched shoots

Affinities with Krassiloviaceae inside Voltziales.

Otozamites[1][10]

  • O. beani
  • O. cf.gramineus
  • O. tenuatus
  • O. sp.

Isolated leaflets

Affinities with Williamsoniaceae inside Bennettitales. Cycadales-Like medium sized trees. The most abundant flora on the Budos Mountain Limestone.

 
Otozamites specimen

Pachypteris[1][10]

  • P. papillosa
  • P. sp

Isolated pinnae

Affinities Corystospermaceae inside Corystospermales. The dominant floral remain over the mangrove-type layers

Pagiophyllum[1][10]

  • P. kurri

Branched shoots

Affinities with Araucariaceae or Hirmeriellaceae inside Pinales.

 
Example of Pagiophyllum specimen

Ptilophyllum[1][10]

  • P. pectinoides
  • P. cf. pecten

Isolated leaflets

Affinities with Williamsoniaceae inside Bennettitales.

 
Ptilophyllum specimen

Zamites[1][10]

  • Z. sp.

Isolated leaflets

Affinities with Williamsoniaceae inside Bennettitales.

 
Zamites specimen

See Also

edit

References

edit
  1. ^ a b c d e f g h i j k l m n o p q r s Pantić, N. K. (1952). "Liassic flora from Budos mountain - Montenegro". Glasnik Prir. Muzeja SRP. Zem. 5 (1): 293–308.
  2. ^ Mirkovic, M.; Kalezic, M.; Pajovic, M. (1977). "Osnovna geološka karta SFRJ 1: 100.000List Bar K34–63 (Basic Geologic Map of SFRY 1: 100.000–the Bar sheet)". Savezni geol. Zavod Beograd Zavod geol. Istraž. Crne Gore (2): 1962–1968.
  3. ^ Pantic, N.; Grubic, A.; Sladic-Trifunovic, M. (1983). "The importance of Mesozoic floras and faunas from intraoceanic carbonate platforms for the interpretation of paleogeographic and geodynamic events in the Tethys". Boll. Soc. Pal. Ltaliana. 22 (2): 5–14.
  4. ^ a b c d Dragičević, I.; Velić, I. (2002). "The northeastern margin of the Adriatic Carbonate Platform". Geologia Croatica. 55 (2): 185–232. doi:10.4154/GC.2002.16. S2CID 73612045. Retrieved 28 January 2022.
  5. ^ a b c Pantic, N. (1980). "Environments, Paleogeogeography and Tectonics". SGD Records of 1979. 21 (4): 7–13.
  6. ^ a b Vlahović, Igor; Tišljar, Josip; Velić, Ivo; Matičec, Dubravko (2002). "The Karst Dinarides are Composed of Relics of a Single Mesozoic Platform: Facts and Consequences". Geologia Croatica. 55 (2): 171–183. doi:10.4154/gc.2002.15. ISSN 1330-030X.
  7. ^ a b c Čadjenović, D.; Kilibarda, Z.; Radulović, N. (2008). "Late Triassic to Late Jurassic evolution of the Adriatic carbonate platform and Budva Basin, southern Montenegro". Sedimentary Geology. 204 (2): 1–17. doi:10.1016/j.sedgeo.2007.12.005. Retrieved 28 January 2022.
  8. ^ Crne, A.; Gorican, S.; Cadjenovic, D. (2006). "Lower Jurassic carbonate platform-to-basin transition at Mt. Rumija (Montenegro)". Volumina Jurassica. 4 (4): 82–83. Retrieved 28 January 2022.
  9. ^ Vakhrameev, V. A. (1991). Jurassic and Cretaceous floras and climates of the Earth (PDF). Cambridge: Cambridge University Press. p. 21. Retrieved 28 January 2022.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Pantić, N. K. (1981). "Macroflora and palynomorphs from Lower jurassic of Budos Mountain, Montenegro". Ann. Geol. Peninsule Balk. 45 (1): 157–171.
  11. ^ Radusinović, Slobodan; Papadopoulos, Argyrios (2021-09-07). "The Potential for REE and Associated Critical Metals in Karstic Bauxites and Bauxite Residue of Montenegro". Minerals. 11 (9): 975. doi:10.3390/min11090975. ISSN 2075-163X.
  12. ^ a b c d e Pantić, N.K.; Duuc, S. (1990). "Palaeophytogeography of Jurassic land flores in Tethyan regions and its margins". Geol. An. Balk. Pol. 2 (1): 237–247.
  13. ^ Barrón, E.; Ureta, S.; Goy, A.; Lassaletta, L. (2010). "Palynology of the Toarcian–Aalenian Global Boundary Stratotype Section and Point (GSSP) at Fuentelsaz (Lower–Middle Jurassic, Iberian Range, Spain)". Review of Palaeobotany and Palynology. 162 (1): 11–28. doi:10.1016/j.revpalbo.2010.04.003. Retrieved 28 January 2022.
  14. ^ Barbacka, M.; Krobicki, M.; Iwańczuk, J.; Muceku, B. (2019). "Kora Jura időszaki növényi és Lithiotis-típusú kagylómaradványok az Albán Alpokban [The Early Jurassic association of plant remains and Lithiotis-type bivalves in the Albanian Alps]" (PDF). Annales Musei historico-naturalis hungarici. 111 (2): 103–114. Retrieved 28 January 2022.
  15. ^ Krobicki, M. (2019). "Is there any connection between the Early Jurassic (Pliensbachian) Lithiotis-type bivalve facies of mangrove-type environments (Albanian Alps) and the origin of primitive crabs (Decapoda, Brachyura)?" (PDF). 20th Czech-Polish-Slovak Palaeontological Conference. 20 (2): 33. Retrieved 28 January 2022.
  16. ^ a b c Radulović, Barbara V.; Sandy, Michael R.; Schaaf, Peter (2024-10-08). "A new species and genus of Lower Jurassic rhynchonellide (Brachiopoda) from Livari (Rumija Mountain, Montenegro): taxonomic implications of the shell microstructure". Historical Biology: 1–18. doi:10.1080/08912963.2024.2403595. ISSN 0891-2963.
  17. ^ a b c d Radulovic, Vladan (2008), "A new Pliensbachian rhynchonellide brachiopod from Livari (Rumija Mountain, Montenegro)", Fossils and Strata, Wiley-Blackwell, pp. 183–192, ISBN 978-1-4051-8664-3, retrieved 2024-10-28
  18. ^ Radulović, Barbara V. (2021-12-23). "New Pliensbachian rhynchonellide (Brachiopoda) from Livari, (Rumija Mountain, Montenegro): the taxonomic implications of microstructure to disentangle cases of homeomorphism". Historical Biology. 34 (12): 2304–2314. doi:10.1080/08912963.2021.2014480. ISSN 0891-2963.
  19. ^ a b Franceschi, M.; Dal Corso, J.; Posenato, R.; Roghi, G.; Masetti, D.; Jenkyns, H.C. (2014). "Early Pliensbachian (Early Jurassic) C-isotope perturbation and the diffusion of the Lithiotis Fauna: Insights from the western Tethys". Palaeogeography, Palaeoclimatology, Palaeoecology. 410 (4): 255–263. Bibcode:2014PPP...410..255F. doi:10.1016/j.palaeo.2014.05.025. Retrieved 3 January 2022.
  20. ^ a b Fraser, N.M.; Bottjer, D.J.; Fischer, A.G. (2004). "Dissecting "Lithiotis" Bivalves: Implications for the Early Jurassic Reef Eclipse". PALAIOS. 19 (1): 51–67. Bibcode:2004Palai..19...51F. doi:10.1669/0883-1351(2004)019<0051:DLBIFT>2.0.CO;2. S2CID 128632794. Retrieved 3 January 2022.
  21. ^ a b c d e f Geyer, O. F. (1977). "Die "Lithiotis-Kalke" im Bereich der unterjurassischen Tethys [The "Lithiotis Limestones" in the Lower Jurassic Tethys realm]". Neues Jahrbuch fuer Geologie und Palaeontologie, Abhandlungen. 153 (3): 304–340.
  22. ^ Posenato, R.; Masetti, D. (2012). "Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (Southern Alps, Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 361 (2): 1–13. Bibcode:2012PPP...361....1P. doi:10.1016/j.palaeo.2012.07.001. Retrieved 3 January 2022.
  23. ^ Posenato, R.; Masetti, D. (2012). "Environmental control and dynamics of Lower Jurassic bivalve build-ups in the Trento Platform (Southern Alps, Italy)". Palaeogeography, Palaeoclimatology, Palaeoecology. 361 (2): 1–13. Bibcode:2012PPP...361....1P. doi:10.1016/j.palaeo.2012.07.001. Retrieved 3 January 2022.
  24. ^ a b c Salamon, Mariusz A. (2019). "A new prospect in crinoid (Crinoidea, Echinodermata) research: An example from the Lower Jurassic of Montenegro". Carnets de géologie (Notebooks on geology) (2019). doi:10.4267/2042/70491. hdl:20.500.12128/11352. ISSN 1765-2553.
  25. ^ a b c d e f g h i j k Zhang, Jianguang; Lenz, Olaf Klaus; Wang, Pujun; Hornung, Jens (2021). "The Eco-Plant model and its implication on Mesozoic dispersed sporomorphs for Bryophytes, Pteridophytes, and Gymnosperms". Review of Palaeobotany and Palynology. 293: 104503. doi:10.1016/j.revpalbo.2021.104503. ISSN 0034-6667.
  26. ^ Hofmann, Christa-Ch.; Odgerel, Nyamsambuu; Seyfullah, Leyla J. (2021). "The occurrence of pollen of Sciadopityaceae Luerss. through time". Fossil Imprint. 77 (2): 271–281. doi:10.37520/fi.2021.019. S2CID 245555379. Retrieved 27 December 2021.
  27. ^ Li, Chunxiang; Miao, Xinyuan; Zhang, Li-Bing; Ma, Junye; Hao, Jiasheng (January 2020). "Re-evaluation of the systematic position of the Jurassic–Early Cretaceous fern genus Coniopteris". Cretaceous Research. 105: 104136. Bibcode:2020CrRes.10504136L. doi:10.1016/j.cretres.2019.04.007. S2CID 146355798.