In computational geometry, Chan's algorithm,[1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space. The algorithm takes time, where is the number of vertices of the output (the convex hull). In the planar case, the algorithm combines an algorithm (Graham scan, for example) with Jarvis march (), in order to obtain an optimal time. Chan's algorithm is notable because it is much simpler than the Kirkpatrick–Seidel algorithm, and it naturally extends to 3-dimensional space. This paradigm[2] has been independently developed by Frank Nielsen in his Ph.D. thesis.[3]

A 2D demo for Chan's algorithm. Note however that the algorithm divides the points arbitrarily, not by x-coordinate.

Algorithm

edit

Overview

edit

A single pass of the algorithm requires a parameter   which is between 0 and   (number of points of our set  ). Ideally,   but  , the number of vertices in the output convex hull, is not known at the start. Multiple passes with increasing values of   are done which then terminates when  (see below on choosing parameter  ).

The algorithm starts by arbitrarily partitioning the set of points   into   subsets   with at most   points each; notice that  .

For each subset  , it computes the convex hull,  , using an   algorithm (for example, Graham scan), where   is the number of points in the subset. As there are   subsets of   points each, this phase takes   time.

During the second phase, Jarvis's march is executed, making use of the precomputed (mini) convex hulls,  . At each step in this Jarvis's march algorithm, we have a point   in the convex hull (at the beginning,   may be the point in   with the lowest y coordinate, which is guaranteed to be in the convex hull of  ), and need to find a point   such that all other points of   are to the right of the line  [clarification needed], where the notation   simply means that the next point, that is  , is determined as a function of   and  . The convex hull of the set  ,  , is known and contains at most   points (listed in a clockwise or counter-clockwise order), which allows to compute   in   time by binary search[how?]. Hence, the computation of   for all the   subsets can be done in   time. Then, we can determine   using the same technique as normally used in Jarvis's march, but only considering the points   (i.e. the points in the mini convex hulls) instead of the whole set  . For those points, one iteration of Jarvis's march is   which is negligible compared to the computation for all subsets. Jarvis's march completes when the process has been repeated   times (because, in the way Jarvis march works, after at most   iterations of its outermost loop, where   is the number of points in the convex hull of  , we must have found the convex hull), hence the second phase takes   time, equivalent to   time if   is close to   (see below the description of a strategy to choose   such that this is the case).

By running the two phases described above, the convex hull of   points is computed in   time.

Choosing the parameter m

edit

If an arbitrary value is chosen for  , it may happen that  . In that case, after   steps in the second phase, we interrupt the Jarvis's march as running it to the end would take too much time. At that moment, a   time will have been spent, and the convex hull will not have been calculated.

The idea is to make multiple passes of the algorithm with increasing values of  ; each pass terminates (successfully or unsuccessfully) in   time. If   increases too slowly between passes, the number of iterations may be large; on the other hand, if it rises too quickly, the first   for which the algorithm terminates successfully may be much larger than  , and produce a complexity  .

Squaring Strategy

edit

One possible strategy is to square the value of   at each iteration, up to a maximum value of   (corresponding to a partition in singleton sets).[4] Starting from a value of 2, at iteration  ,   is chosen. In that case,   iterations are made, given that the algorithm terminates once we have

 

with the logarithm taken in base  , and the total running time of the algorithm is

 

In three dimensions

edit

To generalize this construction for the 3-dimensional case, an   algorithm to compute the 3-dimensional convex hull by Preparata and Hong should be used instead of Graham scan, and a 3-dimensional version of Jarvis's march needs to be used. The time complexity remains  .[1]

Pseudocode

edit

In the following pseudocode, text between parentheses and in italic are comments. To fully understand the following pseudocode, it is recommended that the reader is already familiar with Graham scan and Jarvis march algorithms to compute the convex hull,  , of a set of points,  .

Input: Set   with   points .
Output: Set   with   points, the convex hull of  .
(Pick a point of   which is guaranteed to be in  : for instance, the point with the lowest y coordinate.)
(This operation takes   time: e.g., we can simply iterate through  .)
 
(  is used in the Jarvis march part of this Chan's algorithm,
so that to compute the second point,  , in the convex hull of  .)
(Note:   is not a point of  .)
(For more info, see the comments close to the corresponding part of the Chan's algorithm.)
 
(Note:  , the number of points in the final convex hull of  , is not known.)
(These are the iterations needed to discover the value of  , which is an estimate of  .)
(  is required for this Chan's algorithm to find the convex hull of  .)
(More specifically, we want  , so that not to perform too many unnecessary iterations
and so that the time complexity of this Chan's algorithm is  .)
(As explained above in this article, a strategy is used where at most   iterations are required to find  .)
(Note: the final   may not be equal to  , but it is never smaller than   and greater than  .)
(Nevertheless, this Chan's algorithm stops once   iterations of the outermost loop are performed,
that is, even if  , it doesn't perform   iterations of the outermost loop.)
(For more info, see the Jarvis march part of this algorithm below, where   is returned if  .)
for   do
(Set parameter   for the current iteration. A "squaring scheme" is used as described above in this article.
There are other schemes: for example, the "doubling scheme", where  , for  .
If the "doubling scheme" is used, though, the resulting time complexity of this Chan's algorithm is  .)
 
(Initialize an empty list (or array) to store the points of the convex hull of  , as they are found.)
 
 
(Arbitrarily split set of points   into   subsets of roughly   elements each.)
 
(Compute the convex hull of all   subsets of points,  .)
(It takes   time.)
If  , then the time complexity is  .)
for   do
(Compute the convex hull of subset  ,  , using Graham scan, which takes   time.)
(  is the convex hull of the subset of points  .)
 
(At this point, the convex hulls   of respectively the subsets of points   have been computed.)
(Now, use a modified version of the Jarvis march algorithm to compute the convex hull of  .)
(Jarvis march performs in   time, where   is the number of input points and   is the number of points in the convex hull.)
(Given that Jarvis march is an output-sensitive algorithm, its running time depends on the size of the convex hull,  .)
(In practice, it means that Jarvis march performs   iterations of its outermost loop.
At each of these iterations, it performs at most   iterations of its innermost loop.)
(We want  , so we do not want to perform more than   iterations in the following outer loop.)
(If the current   is smaller than  , i.e.  , the convex hull of   cannot be found.)
(In this modified version of Jarvis march, we perform an operation inside the innermost loop which takes   time.
Hence, the total time complexity of this modified version is
 
If  , then the time complexity is  .)
for   do
(Note: here, a point in the convex hull of   is already known, that is  .)
(In this inner for loop,   possible next points to be on the convex hull of  ,  , are computed.)
(Each of these   possible next points is from a different  :
that is,   is a possible next point on the convex hull of   which is part of the convex hull of  .)
(Note:   depend on  : that is, for each iteration  , there are   possible next points to be on the convex hull of  .)
(Note: at each iteration  , only one of the points among   is added to the convex hull of  .)
for   do
(  finds the point   such that the angle   is maximized [why?],
where   is the angle between the vectors   and  . Such   is stored in  .)
(Angles do not need to be calculated directly: the orientation test can be used [how?].)
(  can be performed in   time[how?].)
(Note: at the iteration  ,   and   is known and is a point in the convex hull of  :
in this case, it is the point of   with the lowest y coordinate.)
 
(Choose the point   which maximizes the angle   [why?] to be the next point on the convex hull of  .)
 
(Jarvis march terminates when the next selected point on the convext hull,  , is the initial point,  .)
if  
(Return the convex hull of   which contains   points.)
(Note: of course, no need to return   which is equal to  .)
return  
else
 
(If after   iterations a point   has not been found so that  , then  .)
(We need to start over with a higher value for  .)

Implementation

edit

Chan's paper contains several suggestions that may improve the practical performance of the algorithm, for example:

  • When computing the convex hulls of the subsets, eliminate the points that are not in the convex hull from consideration in subsequent executions.
  • The convex hulls of larger point sets can be obtained by merging previously calculated convex hulls, instead of recomputing from scratch.
  • With the above idea, the dominant cost of algorithm lies in the pre-processing, i.e., the computation of the convex hulls of the groups. To reduce this cost, we may consider reusing hulls computed from the previous iteration and merging them as the group size is increased.

Extensions

edit

Chan's paper contains some other problems whose known algorithms can be made optimal output sensitive using his technique, for example:

  • Computing the lower envelope   of a set   of   line segments, which is defined as the lower boundary of the unbounded trapezoid of formed by the intersections.
  • Hershberger[5] gave an   algorithm which can be sped up to  , where h is the number of edges in the envelope
  • Constructing output sensitive algorithms for higher dimensional convex hulls. With the use of grouping points and using efficient data structures,   complexity can be achieved provided h is of polynomial order in  .

See also

edit

References

edit
  1. ^ a b Chan, Timothy M. (1996). "Optimal output-sensitive convex hull algorithms in two and three dimensions". Discrete & Computational Geometry. 16 (4): 361–368. doi:10.1007/BF02712873.
  2. ^ Nielsen, Frank (2000). "Grouping and Querying: A Paradigm to Get Output-Sensitive Algorithms". Discrete and Computational Geometry. Lecture Notes in Computer Science. Vol. 1763. pp. 250–257. doi:10.1007/978-3-540-46515-7_21. ISBN 978-3-540-67181-7.
  3. ^ Frank Nielsen. "Adaptive Computational Geometry". Ph.D. thesis, INRIA, 1996.
  4. ^ Chazelle, Bernard; Matoušek, Jiří (1995). "Derandomizing an output-sensitive convex hull algorithm in three dimensions". Computational Geometry. 5: 27–32. doi:10.1016/0925-7721(94)00018-Q.
  5. ^ Hershberger, John (1989). "Finding the upper envelope of n line segments in O(n log n) time". Information Processing Letters. 33 (4): 169–174. doi:10.1016/0020-0190(89)90136-1.