Comparison of deep learning software
(Redirected from Comparison of deep learning frameworks)
The following tables compare notable software frameworks, libraries, and computer programs for deep learning applications.
Deep learning software by name
editSoftware | Creator | Initial release | Software license[a] | Open source | Platform | Written in | Interface | OpenMP support | OpenCL support | CUDA support | ROCm support[1] | Automatic differentiation[2] | Has pretrained models | Recurrent nets | Convolutional nets | RBM/DBNs | Parallel execution (multi node) | Actively developed |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BigDL | Jason Dai (Intel) | 2016 | Apache 2.0 | Yes | Apache Spark | Scala | Scala, Python | No | No | Yes | Yes | Yes | Yes | |||||
Caffe | Berkeley Vision and Learning Center | 2013 | BSD | Yes | Linux, macOS, Windows[3] | C++ | Python, MATLAB, C++ | Yes | Under development[4] | Yes | No | Yes | Yes[5] | Yes | Yes | No | ? | No[6] |
Chainer | Preferred Networks | 2015 | BSD | Yes | Linux, macOS | Python | Python | No | No | Yes | No | Yes | Yes | Yes | Yes | No | Yes | No[7] |
Deeplearning4j | Skymind engineering team; Deeplearning4j community; originally Adam Gibson | 2014 | Apache 2.0 | Yes | Linux, macOS, Windows, Android (Cross-platform) | C++, Java | Java, Scala, Clojure, Python (Keras), Kotlin | Yes | No[8] | Yes[9][10] | No | Computational Graph | Yes[11] | Yes | Yes | Yes | Yes[12] | Yes |
Dlib | Davis King | 2002 | Boost Software License | Yes | Cross-platform | C++ | C++, Python | Yes | No | Yes | No | Yes | Yes | No | Yes | Yes | Yes | Yes |
Flux | Mike Innes | 2017 | MIT license | Yes | Linux, MacOS, Windows (Cross-platform) | Julia | Julia | Yes | No | Yes | Yes[13] | Yes | Yes | No | Yes | Yes | ||
Intel Data Analytics Acceleration Library | Intel | 2015 | Apache License 2.0 | Yes | Linux, macOS, Windows on Intel CPU[14] | C++, Python, Java | C++, Python, Java[14] | Yes | No | No | No | Yes | No | Yes | Yes | Yes | ||
Intel Math Kernel Library 2017 [15] and later | Intel | 2017 | Proprietary | No | Linux, macOS, Windows on Intel CPU[16] | C/C++, DPC++, Fortran | C[17] | Yes[18] | No | No | No | Yes | No | Yes[19] | Yes[19] | No | Yes | |
Google JAX | 2018 | Apache License 2.0 | Yes | Linux, macOS, Windows | Python | Python | Only on Linux | No | Yes | No | Yes | Yes | ||||||
Keras | François Chollet | 2015 | MIT license | Yes | Linux, macOS, Windows | Python | Python, R | Only if using Theano as backend | Can use Theano, Tensorflow or PlaidML as backends | Yes | No | Yes | Yes[20] | Yes | Yes | No[21] | Yes[22] | Yes |
MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) | MathWorks | 1992 | Proprietary | No | Linux, macOS, Windows | C, C++, Java, MATLAB | MATLAB | No | No | Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder[23] | No | Yes[24] | Yes[25][26] | Yes[25] | Yes[25] | Yes | With Parallel Computing Toolbox[27] | Yes |
Microsoft Cognitive Toolkit (CNTK) | Microsoft Research | 2016 | MIT license[28] | Yes | Windows, Linux[29] (macOS via Docker on roadmap) | C++ | Python (Keras), C++, Command line,[30] BrainScript[31] (.NET on roadmap[32]) | Yes[33] | No | Yes | No | Yes | Yes[34] | Yes[35] | Yes[35] | No[36] | Yes[37] | No[38] |
ML.NET | Microsoft | 2018 | MIT license | Yes | Windows, Linux, macOS | C#, C++ | C#, F# | Yes | ||||||||||
Apache MXNet | Apache Software Foundation | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows,[39][40] AWS, Android,[41] iOS, JavaScript[42] | Small C++ core library | C++, Python, Julia, MATLAB, JavaScript, Go, R, Scala, Perl, Clojure | Yes | No | Yes | No | Yes[43] | Yes[44] | Yes | Yes | Yes | Yes[45] | No |
Neural Designer | Artelnics | 2014 | Proprietary | No | Linux, macOS, Windows | C++ | Graphical user interface | Yes | No | Yes | No | Analytical differentiation | No | No | No | No | Yes | Yes |
OpenNN | Artelnics | 2003 | GNU LGPL | Yes | Cross-platform | C++ | C++ | Yes | No | Yes | No | ? | ? | No | No | No | ? | Yes |
PlaidML | Vertex.AI, Intel | 2017 | Apache 2.0 | Yes | Linux, macOS, Windows | Python, C++, OpenCL | Python, C++ | ? | Some OpenCL ICDs are not recognized | No | No | Yes | Yes | Yes | Yes | Yes | Yes | |
PyTorch | Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan (Facebook) | 2016 | BSD | Yes | Linux, macOS, Windows, Android[46] | Python, C, C++, CUDA | Python, C++, Julia, R[47] | Yes | Via separately maintained package[48][49][50] | Yes | Yes | Yes | Yes | Yes | Yes | Yes[51] | Yes | Yes |
Apache SINGA | Apache Software Foundation | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows | C++ | Python, C++, Java | No | Supported in V1.0 | Yes | No | ? | Yes | Yes | Yes | Yes | Yes | Yes |
TensorFlow | Google Brain | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows,[52][53] Android | C++, Python, CUDA | Python (Keras), C/C++, Java, Go, JavaScript, R,[54] Julia, Swift | No | On roadmap[55] but already with SYCL[56] support | Yes | Yes | Yes[57] | Yes[58] | Yes | Yes | Yes | Yes | Yes |
Theano | Université de Montréal | 2007 | BSD | Yes | Cross-platform | Python | Python (Keras) | Yes | Under development[59] | Yes | No | Yes[60][61] | Through Lasagne's model zoo[62] | Yes | Yes | Yes | Yes[63] | No |
Torch | Ronan Collobert, Koray Kavukcuoglu, Clement Farabet | 2002 | BSD | Yes | Linux, macOS, Windows,[64] Android,[65] iOS | C, Lua | Lua, LuaJIT,[66] C, utility library for C++/OpenCL[67] | Yes | Third party implementations[68][69] | Yes[70][71] | No | Through Twitter's Autograd[72] | Yes[73] | Yes | Yes | Yes | Yes[64] | No |
Wolfram Mathematica 10[74] and later | Wolfram Research | 2014 | Proprietary | No | Windows, macOS, Linux, Cloud computing | C++, Wolfram Language, CUDA | Wolfram Language | Yes | No | Yes | No | Yes | Yes[75] | Yes | Yes | Yes | Yes[76] | Yes |
Software | Creator | Initial release | Software license[a] | Open source | Platform | Written in | Interface | OpenMP support | OpenCL support | CUDA support | ROCm support[77] | Automatic differentiation[2] | Has pretrained models | Recurrent nets | Convolutional nets | RBM/DBNs | Parallel execution (multi node) | Actively developed |
Comparison of machine learning model compatibility
editFormat name | Design goal | Compatible with other formats | Self-contained DNN Model | Pre-processing and Post-processing | Run-time configuration for tuning & calibration | DNN model interconnect | Common platform |
---|---|---|---|---|---|---|---|
TensorFlow, Keras, Caffe, Torch | Algorithm training | No | No / Separate files in most formats | No | No | No | Yes |
ONNX | Algorithm training | Yes | No / Separate files in most formats | No | No | No | Yes |
See also
editReferences
edit- ^ "Deep Learning — ROCm 4.5.0 documentation". Archived from the original on 2022-12-05. Retrieved 2022-09-27.
- ^ a b Atilim Gunes Baydin; Barak A. Pearlmutter; Alexey Andreyevich Radul; Jeffrey Mark Siskind (20 February 2015). "Automatic differentiation in machine learning: a survey". arXiv:1502.05767 [cs.LG].
- ^ "Microsoft/caffe". GitHub. 30 October 2021.
- ^ "Caffe: a fast open framework for deep learning". July 19, 2019 – via GitHub.
- ^ "Caffe | Model Zoo". caffe.berkeleyvision.org.
- ^ GitHub - BVLC/caffe: Caffe: a fast open framework for deep learning., Berkeley Vision and Learning Center, 2019-09-25, retrieved 2019-09-25
- ^ Preferred Networks Migrates its Deep Learning Research Platform to PyTorch, 2019-12-05, retrieved 2019-12-27
- ^ "Support for Open CL · Issue #27 · deeplearning4j/nd4j". GitHub.
- ^ "N-Dimensional Scientific Computing for Java". Archived from the original on 2016-10-16. Retrieved 2016-02-05.
- ^ "Comparing Top Deep Learning Frameworks". Deeplearning4j. Archived from the original on 2017-11-07. Retrieved 2017-10-31.
- ^ Chris Nicholson; Adam Gibson. "Deeplearning4j Models". Archived from the original on 2017-02-11. Retrieved 2016-03-02.
- ^ Deeplearning4j. "Deeplearning4j on Spark". Deeplearning4j. Archived from the original on 2017-07-13. Retrieved 2016-09-01.
{{cite web}}
: CS1 maint: numeric names: authors list (link) - ^ "Metalhead". FluxML. 29 October 2021.
- ^ a b "Intel® Data Analytics Acceleration Library (Intel® DAAL)". software.intel.com. November 20, 2018.
- ^ "Intel® Math Kernel Library Release Notes and New Features". Intel.
- ^ "Intel® Math Kernel Library (Intel® MKL)". software.intel.com. September 11, 2018.
- ^ "Deep Neural Network Functions". software.intel.com. May 24, 2019.
- ^ "Using Intel® MKL with Threaded Applications". software.intel.com. June 1, 2017.
- ^ a b "Intel® Xeon Phi™ Delivers Competitive Performance For Deep Learning—And Getting Better Fast". software.intel.com. March 21, 2019.
- ^ "Applications - Keras Documentation". keras.io.
- ^ "Is there RBM in Keras? · Issue #461 · keras-team/keras". GitHub.
- ^ "Does Keras support using multiple GPUs? · Issue #2436 · keras-team/keras". GitHub.
- ^ "GPU Coder - MATLAB & Simulink". MathWorks. Retrieved 13 November 2017.
- ^ "Automatic Differentiation Background - MATLAB & Simulink". MathWorks. September 3, 2019. Retrieved November 19, 2019.
- ^ a b c "Neural Network Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017.
- ^ "Deep Learning Models - MATLAB & Simulink". MathWorks. Retrieved 13 November 2017.
- ^ "Parallel Computing Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017.
- ^ "CNTK/LICENSE.md at master · Microsoft/CNTK". GitHub.
- ^ "Setup CNTK on your machine". GitHub.
- ^ "CNTK usage overview". GitHub.
- ^ "BrainScript Network Builder". GitHub.
- ^ ".NET Support · Issue #960 · Microsoft/CNTK". GitHub.
- ^ "How to train a model using multiple machines? · Issue #59 · Microsoft/CNTK". GitHub.
- ^ "Prebuilt models for image classification · Issue #140 · microsoft/CNTK". GitHub.
- ^ a b "CNTK - Computational Network Toolkit". Microsoft Corporation.
- ^ "Restricted Boltzmann Machine with CNTK #534". GitHub, Inc. 27 May 2016. Retrieved 30 October 2023.
- ^ "Multiple GPUs and machines". Microsoft Corporation.
- ^ "Disclaimer". CNTK TEAM. 6 November 2021.
- ^ "Releases · dmlc/mxnet". Github.
- ^ "Installation Guide — mxnet documentation". Readthdocs.
- ^ "MXNet Smart Device". ReadTheDocs. Archived from the original on 2016-09-21. Retrieved 2016-05-19.
- ^ "MXNet.js". Github. 28 October 2021.
- ^ "— Redirecting to mxnet.io". mxnet.readthedocs.io.
- ^ "Model Gallery". GitHub. 29 October 2022.
- ^ "Run MXNet on Multiple CPU/GPUs with Data Parallel". GitHub.
- ^ "PyTorch". Dec 17, 2021.
- ^ "Falbel D, Luraschi J (2023). torch: Tensors and Neural Networks with 'GPU' Acceleration". torch.mlverse.org. Retrieved 2023-11-28.
- ^ "OpenCL build of pytorch: (in-progress, not useable) - hughperkins/pytorch-coriander". July 14, 2019 – via GitHub.
- ^ "DLPrimitives/OpenCL out of tree backend for pytorch - artyom-beilis/pytorch_dlprim". Jan 21, 2022 – via GitHub.
- ^ "OpenCL Support · Issue #488 · pytorch/pytorch". GitHub.
- ^ "Restricted Boltzmann Machines (RBMs) in PyTorch". GitHub. 14 November 2022.
- ^ "Install TensorFlow with pip".
- ^ "TensorFlow 0.12 adds support for Windows".
- ^ Allaire, J.J.; Kalinowski, T.; Falbel, D.; Eddelbuettel, D.; Yuan, T.; Golding, N. (28 September 2023). "tensorflow: R Interface to 'TensorFlow'". The Comprehensive R Archive Network. Retrieved 30 October 2023.
- ^ "tensorflow/roadmap.md at master". GitHub. January 23, 2017. Retrieved May 21, 2017.
- ^ "OpenCL support". GitHub.
- ^ "TensorFlow". TensorFlow.
- ^ "Models and examples built with TensorFlow". July 19, 2019 – via GitHub.
- ^ "Using the GPU: Theano 0.8.2 documentation". Archived from the original on 2017-04-01. Retrieved 2016-01-21.
- ^ "gradient – Symbolic Differentiation — Theano 1.0.0 documentation". deeplearning.net.
- ^ "Automatic vs. Symbolic differentiation".
- ^ "Recipes/modelzoo at master · Lasagne/Recipes". GitHub.
- ^ "Using multiple GPUs — Theano 1.0.0 documentation". deeplearning.net.
- ^ a b "torch/torch7". July 18, 2019 – via GitHub.
- ^ "GitHub - soumith/torch-android: Torch-7 for Android". GitHub. 13 October 2021.
- ^ "Torch7: A MATLAB-like Environment for Machine Learning" (PDF).
- ^ "GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library". GitHub. 18 November 2020.
- ^ "Cheatsheet". GitHub.
- ^ "cltorch". GitHub.
- ^ "Torch CUDA backend". GitHub.
- ^ "Torch CUDA backend for nn". GitHub.
- ^ "Autograd automatically differentiates native Torch code: twitter/torch-autograd". July 9, 2019 – via GitHub.
- ^ "ModelZoo". GitHub.
- ^ "Launching Mathematica 10". Wolfram.
- ^ "Wolfram Neural Net Repository of Neural Network Models". resources.wolframcloud.com.
- ^ "Parallel Computing—Wolfram Language Documentation". reference.wolfram.com.
- ^ "Deep Learning — ROCm 4.5.0 documentation". Archived from the original on 2022-12-05. Retrieved 2022-09-27.