Conditional mutual information

In probability theory, particularly information theory, the conditional mutual information[1][2] is, in its most basic form, the expected value of the mutual information of two random variables given the value of a third.

Venn diagram of information theoretic measures for three variables , , and , represented by the lower left, lower right, and upper circles, respectively. The conditional mutual informations , and are represented by the yellow, cyan, and magenta regions, respectively.

Definition

edit

For random variables  ,  , and   with support sets  ,   and  , we define the conditional mutual information as

 

This may be written in terms of the expectation operator:  .

Thus   is the expected (with respect to  ) Kullback–Leibler divergence from the conditional joint distribution   to the product of the conditional marginals   and  . Compare with the definition of mutual information.

In terms of PMFs for discrete distributions

edit

For discrete random variables  ,  , and   with support sets  ,   and  , the conditional mutual information   is as follows

 

where the marginal, joint, and/or conditional probability mass functions are denoted by   with the appropriate subscript. This can be simplified as

 

In terms of PDFs for continuous distributions

edit

For (absolutely) continuous random variables  ,  , and   with support sets  ,   and  , the conditional mutual information   is as follows

 

where the marginal, joint, and/or conditional probability density functions are denoted by   with the appropriate subscript. This can be simplified as

 

Some identities

edit

Alternatively, we may write in terms of joint and conditional entropies as[3]

 

This can be rewritten to show its relationship to mutual information

 

usually rearranged as the chain rule for mutual information

 

or

 

Another equivalent form of the above is

 

Another equivalent form of the conditional mutual information is

 

Like mutual information, conditional mutual information can be expressed as a Kullback–Leibler divergence:

 

Or as an expected value of simpler Kullback–Leibler divergences:

 ,
 .

More general definition

edit

A more general definition of conditional mutual information, applicable to random variables with continuous or other arbitrary distributions, will depend on the concept of regular conditional probability.[4]

Let   be a probability space, and let the random variables  ,  , and   each be defined as a Borel-measurable function from   to some state space endowed with a topological structure.

Consider the Borel measure (on the σ-algebra generated by the open sets) in the state space of each random variable defined by assigning each Borel set the  -measure of its preimage in  . This is called the pushforward measure   The support of a random variable is defined to be the topological support of this measure, i.e.  

Now we can formally define the conditional probability measure given the value of one (or, via the product topology, more) of the random variables. Let   be a measurable subset of   (i.e.  ) and let   Then, using the disintegration theorem:

 

where the limit is taken over the open neighborhoods   of  , as they are allowed to become arbitrarily smaller with respect to set inclusion.

Finally we can define the conditional mutual information via Lebesgue integration:

 

where the integrand is the logarithm of a Radon–Nikodym derivative involving some of the conditional probability measures we have just defined.

Note on notation

edit

In an expression such as       and   need not necessarily be restricted to representing individual random variables, but could also represent the joint distribution of any collection of random variables defined on the same probability space. As is common in probability theory, we may use the comma to denote such a joint distribution, e.g.   Hence the use of the semicolon (or occasionally a colon or even a wedge  ) to separate the principal arguments of the mutual information symbol. (No such distinction is necessary in the symbol for joint entropy, since the joint entropy of any number of random variables is the same as the entropy of their joint distribution.)

Properties

edit

Nonnegativity

edit

It is always true that

 ,

for discrete, jointly distributed random variables  ,   and  . This result has been used as a basic building block for proving other inequalities in information theory, in particular, those known as Shannon-type inequalities. Conditional mutual information is also non-negative for continuous random variables under certain regularity conditions.[5]

Interaction information

edit

Conditioning on a third random variable may either increase or decrease the mutual information: that is, the difference  , called the interaction information, may be positive, negative, or zero. This is the case even when random variables are pairwise independent. Such is the case when:  in which case  ,   and   are pairwise independent and in particular  , but  

Chain rule for mutual information

edit

The chain rule (as derived above) provides two ways to decompose  :

 

The data processing inequality is closely related to conditional mutual information and can be proven using the chain rule.

Interaction information

edit

The conditional mutual information is used to inductively define the interaction information, a generalization of mutual information, as follows:

 

where

 

Because the conditional mutual information can be greater than or less than its unconditional counterpart, the interaction information can be positive, negative, or zero, which makes it hard to interpret.

References

edit
  1. ^ Wyner, A. D. (1978). "A definition of conditional mutual information for arbitrary ensembles". Information and Control. 38 (1): 51–59. doi:10.1016/s0019-9958(78)90026-8.
  2. ^ Dobrushin, R. L. (1959). "General formulation of Shannon's main theorem in information theory". Uspekhi Mat. Nauk. 14: 3–104.
  3. ^ Cover, Thomas; Thomas, Joy A. (2006). Elements of Information Theory (2nd ed.). New York: Wiley-Interscience. ISBN 0-471-24195-4.
  4. ^ D. Leao, Jr. et al. Regular conditional probability, disintegration of probability and Radon spaces. Proyecciones. Vol. 23, No. 1, pp. 15–29, May 2004, Universidad Católica del Norte, Antofagasta, Chile PDF
  5. ^ Polyanskiy, Yury; Wu, Yihong (2017). Lecture notes on information theory (PDF). p. 30.