The Crew Dragon Launch Abort System is designed to propel the SpaceX Crew Dragon spacecraft away from a failing launch vehicle. It is equipped with 8 SuperDraco engines, each capable of generating 71 kN of thrust.[3][4]
Manufacturer | SpaceX |
---|---|
Country of origin | United States |
Launch history | |
Status | Operational |
Crew Dragon Launch Abort System | |
Powered by | 8 × SuperDraco (4 × pairs of 2)[2] |
Maximum thrust | 71 kN |
Burn time | 25 seconds |
Propellant | N2O4 / CH6N2 |
The abort system has several modes, or procedures for performing an abort in different phases of flight, including a pad abort, an in-flight abort, and the ability to use the abort system to fly into a lower than expected orbit should a failure occur late in flight.
Design
editTraditionally, spacecraft like Apollo and Soyuz have utilized solid-fueled "puller" launch escape systems, with the main spacecraft beneath a protective fairing attached to the escape system. Once in space, the escape system and the fairing are jettisoned, with the spacecraft's mode of abort switched to using its orbital maneuvering thrusters or upper stages.[5][6] Crew Dragon, however, has its abort system permanently attached to the sides of the spacecraft.[3]
Part of the reasoning behind this design is that it was originally planned to land dragon propulsively using the launch abort system.[7] These plans were dropped after skepticism from NASA and the cancellation of SpaceX's Red Dragon capsule.[8] However, the capability was introduced on Crew-8, though only in the event of a parachute failure.[9] Additionally, the ability to keep the abort system attached to the rocket throughout the entire ascent rather than jettisoning the launch escape system after stage separation allows for an abort capability in all stages of flight, increasing crew safety.[10]
Crew Dragon's "trunk", or cargo bay, also plays an important role in the abort sequence. Rather than leaving the trunk with the rocket like Apollo or Soyuz, Dragon keeps the trunk attached during an abort for aerodynamic stability.[11]
History
editPad Explosion
editOn 20 April 2019, Crew Dragon C204 was destroyed in an incident while testing its SuperDraco engines. A video leaked shortly the incident after shows the capsule exploding on a launch mount.[12][13] NASA and SpaceX confirmed the explosion and stated that there were no injuries.[14]
Following an investigation, SpaceX stated that the explosion was the result of a faulty valve. During a nominal ignition sequence, valves keeping helium inside COPVs (Composite Overwrapped Pressure Vessels) are opened, causing the helium to flow through one-way "check" valves into the propellant tanks, pushing the fuel into the combustion chamber.[15]
In this incident, however, the one-way oxidizer valve had allowed nitrogen tetroxide (NTO) to leak back through the helium tube.[16] When the helium valve was opened, the "blobs" of NTO inside the helium line were accelerated at high speeds, slamming into and nearly instantaneously destroying the one-way oxidizer valve. The internal titanium components of the destroyed valve were then exposed to the NTO, resulting in combustion and the loss of the vehicle.[17][18]
In-Flight Abort Test
editOn 19 January 2020, SpaceX conducted a test of Crew Dragon's launch abort system.[19]
After a successful liftoff, the launch abort sequence was initiated 1 minute and 26 seconds into flight. Crew Dragon C205 successfully separated with the Falcon 9 rocket, with the rocket breaking up seconds later under the intense aerodynamic forces of max-q.[20]
After separating the trunk, Crew Dragon reached an apogee of 42 kilometers before splashing down in the Atlantic Ocean.[21][22]
Abort Modes
editThe Crew Dragon has multiple abort modes for different phases of flight, each with its own landing zones and procedures. As the flight progresses, SpaceX mission control calls out switches between abort modes.
For typical launches, recovery zones are placed along the 51.64 degree inclination[23] of the ISS, and can be targeted with higher levels of precision than spacecraft such as Orion[24] and Shenzhou due to the throttling abilities of the SuperDraco engines. The recovery areas for a 2a type abort are along the East Coast of the United States and the Canadian Maritime provinces, with a 2b abort landing the Crew Dragon capsule near Novia Scotia and the 2c and 2d abort modes resulting in a landing in Western Ireland.[25] 1a and 1b aborts result in landings near the American East Coast.
Time | Phase | Recovery Zone[26][25] |
---|---|---|
T - 37 minutes | Pad Abort | Launch abort armed; Recovery zone in Florida Coast |
T + 00 minutes, 00 seconds | Stage 1a | Recovery zones from Florida Coast to North Carolina |
T + 01 minutes, 15 seconds | Stage 1b | Recovery zones along Virginia Coast |
T + 02 minutes, 32 seconds | Stage 2a | Stage separation; Recovery zones along North American east coast |
T + 08 minutes, 05 seconds | Stage 2b | Retrograde burn to land near Novia Scotia |
T + 08 minutes, 28 seconds | Stage 2c | Prograde burn to land west of Ireland |
T + 08 minutes, 38 seconds | Stage 2d | Retrograde burn to land west of Ireland |
T + 08 minutes, 44 seconds | Stage 2e | Uses SuperDracos and Dracos to abort to orbit |
See also
edit- Crew Dragon in-flight abort test, a post-launch abort test of the SpaceX Crew Dragon spacecraft
- Crew Dragon pad abort test, a test of Dragon's abort system while on the launch pad
- SpaceX Dragon, a family of SpaceX spacecraft
References
edit- ^ "Elon Musk's SpaceX Plans DragonFly Landing Tests". NBC News. 2014-05-21. Archived from the original on 2024-08-20. Retrieved 2024-10-02.
- ^ Rauf, Jim (2023-10-19). "SpaceX Dragon Spacecraft" (PDF). uc.edu. Archived (PDF) from the original on 2024-08-19. Retrieved 2024-10-02.
- ^ a b SpaceX. "SpaceX Dragon Overview". SpaceX.com. Archived from the original on 2024-09-30. Retrieved 2024-10-02.
- ^ Berger, Eric (2016-04-30). "From zero to 100mph in 1.2 seconds, the SuperDraco thruster delivers". Ars Technica. Archived from the original on 2024-09-26. Retrieved 2024-10-02.
- ^ Gilbert, Michael G. (2015-01-09). "THE MAX LAUNCH ABORT SYSTEM – CONCEPT, FLIGHT TEST, AND EVOLUTION" (PDF). NASA Technical Reports Server. Archived (PDF) from the original on 2024-09-30. Retrieved 2024-10-02.
- ^ Weitering, Hanneke (2019-04-24). "The Emergency Launch Abort Systems of SpaceX and Boeing Explained". Space.com. Archived from the original on 2024-09-26. Retrieved 2024-10-02.
- ^ Karcz; Davis; Aftosmis; Allen; Bakhtian; Dyakanov; Glass; Gonzales; Heldmann; Lemke; Marinova; McKay; Stoker; Wooster; Zarchi (2012-05-10). "RED DRAGON: LOW-COST ACCESS TO THE SURFACE OF MARS USING COMMERCIAL CAPABILITIES" (PDF). NASA Technical Reports Server. Archived (PDF) from the original on 2024-05-21. Retrieved 2024-10-02.
- ^ Foust, Jeff (2017-07-19). "SpaceX drops plans for powered Dragon landings". SpaceNews. Retrieved 2024-10-02.
- ^ Clark, Stephen (2024-09-28). "SpaceX launches mission to bring Starliner astronauts back to Earth". Ars Technica. Retrieved 2024-10-23.
- ^ Harwood, William (2020-05-27). "SpaceX Crew Dragon abort system a major boost for crew safety - CBS News". cbsnews.com. Archived from the original on 2024-09-30. Retrieved 2024-10-02.
- ^ Jordan, Gary; Reed, Benji (2019-09-27). "The SpaceX Crew Dragon - NASA". NASA - Houston, we have a podcast. Archived from the original on 2024-09-27. Retrieved 2024-10-02.
- ^ Berger, Eric (2019-04-22). "Here's what we know, and what we don't, about the Crew Dragon accident". Ars Technica. Archived from the original on 2024-08-19. Retrieved 2024-10-02.
- ^ Mathewson, Samantha (2019-05-01). "NASA Workers Warned About Sharing Images After SpaceX Explosion Video Leak: Report". Space.com. Archived from the original on 2024-06-13. Retrieved 2024-10-02.
- ^ Ryan, Jackson (2019-04-25). "NASA urges patience as SpaceX investigates the Crew Dragon explosion". CNET. Archived from the original on 2023-11-30. Retrieved 2024-10-02.
- ^ Cannon, James L. (2010-10-05). "Liquid Propulsion: Propellant Feed System Design" (PDF). NASA Technical Reports Server. Archived (PDF) from the original on 2024-09-30. Retrieved 2024-10-02.
- ^ Harwood, William (2019-07-15). "SpaceX: Explosion that destroyed Crew Dragon spacecraft in April was caused by leaking valve - CBS News". cbsnews.com. Archived from the original on 2024-02-25. Retrieved 2024-10-02.
- ^ SpaceX (2019-07-15). "UPDATE: IN-FLIGHT ABORT STATIC FIRE TEST ANOMALY INVESTIGATION | SpaceX". SpaceX.com. Archived from the original on 2019-07-15. Retrieved 2024-10-02.
- ^ Foust, Jeff (2019-07-16). "SpaceX Says Faulty Valve Led to Crew Dragon Test Accident". Space.com. Archived from the original on 2024-03-04. Retrieved 2024-10-02.
- ^ Thompson, Amy (2020-01-19). "SpaceX aces Crew Dragon launch abort test, destroys rocket on purpose". Space.com. Archived from the original on 2024-07-28. Retrieved 2024-10-02.
- ^ ScienceAlert (2020-01-19). "With a Spectacular Explosion, SpaceX's Crew Dragon Just Passed a Crucial Safety Test". ScienceAlert. Archived from the original on 2022-08-13. Retrieved 2024-10-02.
- ^ Malik, Tariq (2020-01-19). "How SpaceX's Crew Dragon launch abort test today works in 10 not-so-easy steps". Space.com. Archived from the original on 2024-06-16. Retrieved 2024-10-02.
- ^ Atkinson, Ian (2020-01-17). "SpaceX conducts successful Crew Dragon In-Flight Abort Test". NASASpaceFlight.com. Archived from the original on 2024-07-25. Retrieved 2024-10-02.
- ^ NASA. "International Space Station - NASA". NASA.gov. Archived from the original on 2024-10-01. Retrieved 2024-10-02.
- ^ Jones, Daniel L. (2015-03-03). "Orion Launch Abort System (LAS) | Propulsion on Pad Abort 1 (PA-1)" (PDF). NASA Technical Reports Server. Archived (PDF) from the original on 2024-09-30. Retrieved 2024-10-02.
- ^ a b Gebhardt, Chris (2020-05-21). "Examining Crew Dragon's launch abort modes and splashdown locations". NASASpaceFlight.com. Archived from the original on 2024-09-26. Retrieved 2024-10-02.
- ^ DeSisto, Austin (2020-05-24). "Crew Dragon Launch Day Timeline: From Suit Up to Docking with the ISS". Everyday Astronaut. Archived from the original on 2024-09-26. Retrieved 2024-10-02.