Cyanopeptolins (CPs) are a class of oligopeptides produced by Microcystis and Planktothrix algae strains, and can be neurotoxic.[1][2][3] The production of cyanopeptolins occurs through nonribosomal peptides synthases (NRPS).[4]

Chemistry

edit

CPs are, in general, a six-residue peptide formed into a ring by a beta-lactone bridge,[5] making them chemically depsipeptides (peptidolactones). The first position is usually threonine, which links to one or two residues via an ester bound on the beta-hydroxyl group; the third position is conserved to be 3-amino-6-hydroxy-2-piperidone (Ahp) or a derivative. All other positions are highly variable.[6]

There is not a single, unified nomenclature, for CPs. Names such as CP1020[7] and CP1138 refer to the molar mass. Others, such as aeruginopeptins, micropeptins, microcystilide, nostopeptins, and oscillapeptins,[6] refer to the organism the substance is originally found in.

Factors affecting production

edit

Increased water temperatures, because of climate change and eutrophication of inland waters promote blooms of cyanobacteria, potentially threaten water contamination by the production of the toxic cyanopeptolin CP1020.[1]

Biological activity

edit

Most CPs are serine protease inhibitors.[6]

Cyanopeptolin CP1020 exposure in zebrafish affected pathways related to DNA damage, the circadian rhythm and response to light.[1]

Evolutionary history

edit

CPs are probably very ancient: the cyanobacterial genera that produce CPs appear to have inherited the key modules vertically and not horizontally.[8]

See also

edit

References

edit
  1. ^ a b c Susanne Faltermann; Sara Zucchi; Esther Kohler; Judith F. Blom; Jakob Pernthaler; Karl Fent (April 2014). "Molecular effects of the cyanobacterial toxin cyanopeptolin (CP1020) occurring in algal blooms: Global transcriptome analysis in zebrafish embryos" (PDF). Aquatic Toxicology. 149: 33–39. doi:10.1016/j.aquatox.2014.01.018. PMID 24561424.
  2. ^ Karl Gademann; Cyril Portmann; Judith F. Blom; Michael Zeder; Friedrich Jüttner (2010). "Multiple Toxin Production in the Cyanobacterium Microcystis: Isolation of the Toxic Protease Inhibitor Cyanopeptolin 1020" (PDF). J. Nat. Prod. 73 (5): 980–984. doi:10.1021/np900818c. PMID 20405925. Archived from the original (PDF) on 2022-02-02. Retrieved 2019-07-14.
  3. ^ Martin Welker; Hans Von Döhren (2006). "Cyanobacterial peptides – Nature's own combinatorial biosynthesis". FEMS Microbiology Reviews. 30 (4): 530–563. doi:10.1111/j.1574-6976.2006.00022.x. PMID 16774586.
  4. ^ Ramsy Agha; Samuel Cirés; Lars Wörmer; Antonio Quesada (2013). "Limited Stability of Microcystins in Oligopeptide Compositions of Microcystis aeruginosa (Cyanobacteria): Implications in the Definition of Chemotypes". Toxins. 5 (6): 1089–1104. doi:10.3390/toxins5061089. PMC 3717771. PMID 23744054.
  5. ^ Janssen, Elisabeth M.-L. (March 2019). "Cyanobacterial peptides beyond microcystins – A review on co-occurrence, toxicity, and challenges for risk assessment". Water Research. 151: 488–499. doi:10.1016/j.watres.2018.12.048. PMID 30641464.
  6. ^ a b c Mazur-Marzec, Hanna; Fidor, Anna; Cegłowska, Marta; Wieczerzak, Ewa; Kropidłowska, Magdalena; Goua, Marie; Macaskill, Jenny; Edwards, Christine (26 June 2018). "Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411". Marine Drugs. 16 (7): 220. doi:10.3390/md16070220. PMC 6070996. PMID 29949853.
  7. ^ "Cyanopeptolin CP1020". pubchem.ncbi.nlm.nih.gov.
  8. ^ Rounge, Trine B.; Rohrlack, Thomas; Tooming-Klunderud, Ave; Kristensen, Tom; Jakobsen, Kjetill S. (15 November 2007). "Comparison of Cyanopeptolin Genes in Planktothrix , Microcystis , and Anabaena Strains: Evidence for Independent Evolution within Each Genus". Applied and Environmental Microbiology. 73 (22): 7322–7330. Bibcode:2007ApEnM..73.7322R. doi:10.1128/AEM.01475-07. PMC 2168201. PMID 17921284.
edit