In mathematics, specifically in category theory , Day convolution is an operation on functors that can be seen as a categorified version of function convolution . It was first introduced by Brian Day in 1970 [ 1] in the general context of enriched functor categories .
Day convolution gives a symmetric monoidal structure on
H
o
m
(
C
,
D
)
{\displaystyle Hom(\mathbf {C} ,\mathbf {D} )}
for two symmetric monoidal categories
C
,
D
{\displaystyle \mathbf {C} ,\mathbf {D} }
Another related version is that Day convolution acts as a tensor product for a monoidal category structure on the category of functors
[
C
,
V
]
{\displaystyle [\mathbf {C} ,V]}
over some monoidal category
V
{\displaystyle V}
.
Given
F
,
G
:
C
→
D
{\displaystyle F,G\colon \mathbf {C} \to \mathbf {D} }
for two symmetric monoidal
C
,
D
{\displaystyle \mathbf {C} ,\mathbf {D} }
, we define their day convolution as follows.
It is the left kan extension along
C
×
C
→
⊗
C
{\displaystyle \mathbf {C} \times \mathbf {C} \to ^{\otimes }\mathbf {C} }
of the composition
C
×
C
→
F
,
G
D
×
D
→
⊗
D
{\displaystyle \mathbf {C} \times \mathbf {C} \to ^{F,G}\mathbf {D} \times \mathbf {D} \to ^{\otimes }\mathbf {D} }
Thus evaluated on an object
O
∈
C
{\displaystyle O\in \mathbf {C} }
, intuitively we get a colimit in
D
{\displaystyle \mathbf {D} }
of
F
(
x
)
⊗
G
(
y
)
{\displaystyle F(x)\otimes G(y)}
along approximations of
O
∈
C
{\displaystyle O\in \mathbf {C} }
as a pure tensor
x
⊗
y
{\displaystyle x\otimes y}
Left kan extensions are computed via coends, which leads to the version below.
Let
(
C
,
⊗
c
)
{\displaystyle (\mathbf {C} ,\otimes _{c})}
be a monoidal category enriched over a symmetric monoidal closed category
(
V
,
⊗
)
{\displaystyle (V,\otimes )}
. Given two functors
F
,
G
:
C
→
V
{\displaystyle F,G\colon \mathbf {C} \to V}
, we define their Day convolution as the following coend .[ 2]
F
⊗
d
G
=
∫
x
,
y
∈
C
C
(
x
⊗
c
y
,
−
)
⊗
F
x
⊗
G
y
{\displaystyle F\otimes _{d}G=\int ^{x,y\in \mathbf {C} }\mathbf {C} (x\otimes _{c}y,-)\otimes Fx\otimes Gy}
If
⊗
c
{\displaystyle \otimes _{c}}
is symmetric, then
⊗
d
{\displaystyle \otimes _{d}}
is also symmetric. We can show this defines an associative monoidal product.
(
F
⊗
d
G
)
⊗
d
H
≅
∫
c
1
,
c
2
(
F
⊗
d
G
)
c
1
⊗
H
c
2
⊗
C
(
c
1
⊗
c
c
2
,
−
)
≅
∫
c
1
,
c
2
(
∫
c
3
,
c
4
F
c
3
⊗
G
c
4
⊗
C
(
c
3
⊗
c
c
4
,
c
1
)
)
⊗
H
c
2
⊗
C
(
c
1
⊗
c
c
2
,
−
)
≅
∫
c
1
,
c
2
,
c
3
,
c
4
F
c
3
⊗
G
c
4
⊗
H
c
2
⊗
C
(
c
3
⊗
c
c
4
,
c
1
)
⊗
C
(
c
1
⊗
c
c
2
,
−
)
≅
∫
c
1
,
c
2
,
c
3
,
c
4
F
c
3
⊗
G
c
4
⊗
H
c
2
⊗
C
(
c
3
⊗
c
c
4
⊗
c
c
2
,
−
)
≅
∫
c
1
,
c
2
,
c
3
,
c
4
F
c
3
⊗
G
c
4
⊗
H
c
2
⊗
C
(
c
2
⊗
c
c
4
,
c
1
)
⊗
C
(
c
3
⊗
c
c
1
,
−
)
≅
∫
c
1
,
c
3
F
c
3
⊗
(
G
⊗
d
H
)
c
1
⊗
C
(
c
3
⊗
c
c
1
,
−
)
≅
F
⊗
d
(
G
⊗
d
H
)
{\displaystyle {\begin{aligned}&(F\otimes _{d}G)\otimes _{d}H\\[5pt]\cong {}&\int ^{c_{1},c_{2}}(F\otimes _{d}G)c_{1}\otimes Hc_{2}\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\[5pt]\cong {}&\int ^{c_{1},c_{2}}\left(\int ^{c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4},c_{1})\right)\otimes Hc_{2}\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\[5pt]\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4},c_{1})\otimes \mathbf {C} (c_{1}\otimes _{c}c_{2},-)\\[5pt]\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{4}\otimes _{c}c_{2},-)\\[5pt]\cong {}&\int ^{c_{1},c_{2},c_{3},c_{4}}Fc_{3}\otimes Gc_{4}\otimes Hc_{2}\otimes \mathbf {C} (c_{2}\otimes _{c}c_{4},c_{1})\otimes \mathbf {C} (c_{3}\otimes _{c}c_{1},-)\\[5pt]\cong {}&\int ^{c_{1},c_{3}}Fc_{3}\otimes (G\otimes _{d}H)c_{1}\otimes \mathbf {C} (c_{3}\otimes _{c}c_{1},-)\\[5pt]\cong {}&F\otimes _{d}(G\otimes _{d}H)\end{aligned}}}