Not to be confused with
Dependency relation , which is a binary relation that is symmetric and reflexive.
In mathematics , a dependence relation is a binary relation which generalizes the relation of linear dependence .
Let
X
{\displaystyle X}
be a set . A (binary) relation
◃
{\displaystyle \triangleleft }
between an element
a
{\displaystyle a}
of
X
{\displaystyle X}
and a subset
S
{\displaystyle S}
of
X
{\displaystyle X}
is called a dependence relation , written
a
◃
S
{\displaystyle a\triangleleft S}
, if it satisfies the following properties:
if
a
∈
S
{\displaystyle a\in S}
, then
a
◃
S
{\displaystyle a\triangleleft S}
;
if
a
◃
S
{\displaystyle a\triangleleft S}
, then there is a finite subset
S
0
{\displaystyle S_{0}}
of
S
{\displaystyle S}
, such that
a
◃
S
0
{\displaystyle a\triangleleft S_{0}}
;
if
T
{\displaystyle T}
is a subset of
X
{\displaystyle X}
such that
b
∈
S
{\displaystyle b\in S}
implies
b
◃
T
{\displaystyle b\triangleleft T}
, then
a
◃
S
{\displaystyle a\triangleleft S}
implies
a
◃
T
{\displaystyle a\triangleleft T}
;
if
a
◃
S
{\displaystyle a\triangleleft S}
but
a
⋪
S
−
{
b
}
{\displaystyle a\ntriangleleft S-\lbrace b\rbrace }
for some
b
∈
S
{\displaystyle b\in S}
, then
b
◃
(
S
−
{
b
}
)
∪
{
a
}
{\displaystyle b\triangleleft (S-\lbrace b\rbrace )\cup \lbrace a\rbrace }
.
Given a dependence relation
◃
{\displaystyle \triangleleft }
on
X
{\displaystyle X}
, a subset
S
{\displaystyle S}
of
X
{\displaystyle X}
is said to be independent if
a
⋪
S
−
{
a
}
{\displaystyle a\ntriangleleft S-\lbrace a\rbrace }
for all
a
∈
S
.
{\displaystyle a\in S.}
If
S
⊆
T
{\displaystyle S\subseteq T}
, then
S
{\displaystyle S}
is said to span
T
{\displaystyle T}
if
t
◃
S
{\displaystyle t\triangleleft S}
for every
t
∈
T
.
{\displaystyle t\in T.}
S
{\displaystyle S}
is said to be a basis of
X
{\displaystyle X}
if
S
{\displaystyle S}
is independent and
S
{\displaystyle S}
spans
X
.
{\displaystyle X.}
If
X
{\displaystyle X}
is a non-empty set with a dependence relation
◃
{\displaystyle \triangleleft }
, then
X
{\displaystyle X}
always has a basis with respect to
◃
.
{\displaystyle \triangleleft .}
Furthermore, any two bases of
X
{\displaystyle X}
have the same cardinality .
If
a
◃
S
{\displaystyle a\triangleleft S}
and
S
⊆
T
{\displaystyle S\subseteq T}
, then
a
◃
T
{\displaystyle a\triangleleft T}
, using property 3. and 1.
Let
V
{\displaystyle V}
be a vector space over a field
F
.
{\displaystyle F.}
The relation
◃
{\displaystyle \triangleleft }
, defined by
υ
◃
S
{\displaystyle \upsilon \triangleleft S}
if
υ
{\displaystyle \upsilon }
is in the subspace spanned by
S
{\displaystyle S}
, is a dependence relation. This is equivalent to the definition of linear dependence .
Let
K
{\displaystyle K}
be a field extension of
F
.
{\displaystyle F.}
Define
◃
{\displaystyle \triangleleft }
by
α
◃
S
{\displaystyle \alpha \triangleleft S}
if
α
{\displaystyle \alpha }
is algebraic over
F
(
S
)
.
{\displaystyle F(S).}
Then
◃
{\displaystyle \triangleleft }
is a dependence relation. This is equivalent to the definition of algebraic dependence .