Name
Standard symbol
Definition
Named after
Field of application
Archimedes number
Ar
A
r
=
g
L
3
ρ
ℓ
(
ρ
−
ρ
ℓ
)
μ
2
{\displaystyle \mathrm {Ar} ={\frac {gL^{3}\rho _{\ell }(\rho -\rho _{\ell })}{\mu ^{2}}}}
Archimedes
fluid mechanics (motion of fluids due to density differences)
Atwood number
A
A
=
ρ
1
−
ρ
2
ρ
1
+
ρ
2
{\displaystyle \mathrm {A} ={\frac {\rho _{1}-\rho _{2}}{\rho _{1}+\rho _{2}}}}
George Atwood [citation needed ]
fluid mechanics (onset of instabilities in fluid mixtures due to density differences)
Bagnold number
Ba
B
a
=
ρ
d
2
λ
1
/
2
γ
˙
μ
{\displaystyle \mathrm {Ba} ={\frac {\rho d^{2}\lambda ^{1/2}{\dot {\gamma }}}{\mu }}}
Ralph Bagnold
Granular flow (grain collision stresses to viscous fluid stresses)
Bejan number
Be
B
e
=
Δ
P
L
2
μ
α
{\displaystyle \mathrm {Be} ={\frac {\Delta PL^{2}}{\mu \alpha }}}
Adrian Bejan
fluid mechanics (dimensionless pressure drop along a channel )[ 4]
Bingham number
Bm
B
m
=
τ
y
L
μ
V
{\displaystyle \mathrm {Bm} ={\frac {\tau _{y}L}{\mu V}}}
Eugene C. Bingham
fluid mechanics , rheology (ratio of yield stress to viscous stress)[ 5]
Biot number
Bi
B
i
=
h
L
C
k
b
{\displaystyle \mathrm {Bi} ={\frac {hL_{C}}{k_{b}}}}
Jean-Baptiste Biot
heat transfer (surface vs. volume conductivity of solids)
Blake number
Bl or B
B
=
u
ρ
μ
(
1
−
ϵ
)
D
{\displaystyle \mathrm {B} ={\frac {u\rho }{\mu (1-\epsilon )D}}}
Frank C. Blake (1892–1926)
geology , fluid mechanics , porous media (inertial over viscous forces in fluid flow through porous media)
Bond number
Bo
B
o
=
ρ
a
L
2
γ
{\displaystyle \mathrm {Bo} ={\frac {\rho aL^{2}}{\gamma }}}
Wilfrid Noel Bond
geology , fluid mechanics , porous media (buoyant versus capillary forces, similar to the Eötvös number )[ 6]
Brinkman number
Br
B
r
=
μ
U
2
κ
(
T
w
−
T
0
)
{\displaystyle \mathrm {Br} ={\frac {\mu U^{2}}{\kappa (T_{w}-T_{0})}}}
Henri Brinkman
heat transfer , fluid mechanics (conduction from a wall to a viscous fluid )
Burger number
Bu
B
u
=
(
R
o
F
r
)
2
{\displaystyle \mathrm {Bu} =\left({\dfrac {\mathrm {Ro} }{\mathrm {Fr} }}\right)^{2}}
Alewyn P. Burger (1927–2003)
meteorology , oceanography (density stratification versus Earth's rotation )
Brownell–Katz number
NBK
N
B
K
=
u
μ
k
r
w
σ
{\displaystyle \mathrm {N} _{\mathrm {BK} }={\frac {u\mu }{k_{\mathrm {rw} }\sigma }}}
Lloyd E. Brownell and Donald L. Katz
fluid mechanics (combination of capillary number and Bond number )[ 7]
Capillary number
Ca
C
a
=
μ
V
γ
{\displaystyle \mathrm {Ca} ={\frac {\mu V}{\gamma }}}
porous media , fluid mechanics (viscous forces versus surface tension )
Cauchy number
Ca
C
a
=
ρ
u
2
K
{\displaystyle \mathrm {Ca} ={\frac {\rho u^{2}}{K}}}
Augustin-Louis Cauchy
compressible flows (inertia forces versus compressibility force)
Cavitation number
Ca
C
a
=
p
−
p
v
1
2
ρ
v
2
{\displaystyle \mathrm {Ca} ={\frac {p-p_{\mathrm {v} }}{{\frac {1}{2}}\rho v^{2}}}}
multiphase flow (hydrodynamic cavitation , pressure over dynamic pressure )
Chandrasekhar number
C
C
=
B
2
L
2
μ
o
μ
D
M
{\displaystyle \mathrm {C} ={\frac {B^{2}L^{2}}{\mu _{o}\mu D_{M}}}}
Subrahmanyan Chandrasekhar
hydromagnetics (Lorentz force versus viscosity )
Colburn J factors
J M , J H , J D
Allan Philip Colburn (1904–1955)
turbulence ; heat , mass , and momentum transfer (dimensionless transfer coefficients)
Damkohler number
Da
D
a
=
k
τ
{\displaystyle \mathrm {Da} =k\tau }
Gerhard Damköhler
chemistry (reaction time scales vs. residence time)
Darcy friction factor
C f or f D
Henry Darcy
fluid mechanics (fraction of pressure losses due to friction in a pipe ; four times the Fanning friction factor )
Darcy number
Da
D
a
=
k
d
2
{\displaystyle \mathrm {Da} ={\frac {k}{d^{2}}}}
Henry Darcy
Fluid dynamics (permeability of the medium versus its cross-sectional area in porous media )
Dean number
D
D
=
ρ
V
d
μ
(
d
2
R
)
1
/
2
{\displaystyle \mathrm {D} ={\frac {\rho Vd}{\mu }}\left({\frac {d}{2R}}\right)^{1/2}}
William Reginald Dean
turbulent flow (vortices in curved ducts)
Deborah number
De
D
e
=
t
c
t
p
{\displaystyle \mathrm {De} ={\frac {t_{\mathrm {c} }}{t_{\mathrm {p} }}}}
Deborah
rheology (viscoelastic fluids)
Drag coefficient
c d
c
d
=
2
F
d
ρ
v
2
A
,
{\displaystyle c_{\mathrm {d} }={\dfrac {2F_{\mathrm {d} }}{\rho v^{2}A}}\,,}
aeronautics , fluid dynamics (resistance to fluid motion)
Dukhin number
Du
D
u
=
κ
σ
K
m
a
.
{\displaystyle {\rm {Du}}={\frac {\kappa ^{\sigma }}{{\mathrm {K} _{m}}a}}.}
Stanislav and Andrei Dukhin
Fluid heterogeneous systems (surface conductivity to various electrokinetic and electroacoustic effects)
Eckert number
Ec
E
c
=
V
2
c
p
Δ
T
{\displaystyle \mathrm {Ec} ={\frac {V^{2}}{c_{p}\Delta T}}}
Ernst R. G. Eckert
convective heat transfer (characterizes dissipation of energy ; ratio of kinetic energy to enthalpy )
Ekman number
Ek
E
k
=
ν
2
D
2
Ω
sin
φ
{\displaystyle \mathrm {Ek} ={\frac {\nu }{2D^{2}\Omega \sin \varphi }}}
Vagn Walfrid Ekman
Geophysics (viscosity to Coriolis force ratio)
Eötvös number
Eo
E
o
=
Δ
ρ
g
L
2
σ
{\displaystyle \mathrm {Eo} ={\frac {\Delta \rho \,g\,L^{2}}{\sigma }}}
Loránd Eötvös
fluid mechanics (shape of bubbles or drops )
Ericksen number
Er
E
r
=
μ
v
L
K
{\displaystyle \mathrm {Er} ={\frac {\mu vL}{K}}}
Jerald Ericksen
fluid dynamics (liquid crystal flow behavior; viscous over elastic forces)
Euler number
Eu
E
u
=
Δ
p
ρ
V
2
{\displaystyle \mathrm {Eu} ={\frac {\Delta {}p}{\rho V^{2}}}}
Leonhard Euler
hydrodynamics (stream pressure versus inertia forces)
Excess temperature coefficient
Θ
r
{\displaystyle \Theta _{r}}
Θ
r
=
c
p
(
T
−
T
e
)
U
e
2
/
2
{\displaystyle \Theta _{r}={\frac {c_{p}(T-T_{e})}{U_{e}^{2}/2}}}
heat transfer , fluid dynamics (change in internal energy versus kinetic energy )[ 8]
Fanning friction factor
f
John T. Fanning
fluid mechanics (fraction of pressure losses due to friction in a pipe ; 1/4th the Darcy friction factor )[ 9]
Froude number
Fr
F
r
=
U
g
ℓ
{\displaystyle \mathrm {Fr} ={\frac {U}{\sqrt {g\ell }}}}
William Froude
fluid mechanics (wave and surface behaviour; ratio of a body's inertia to gravitational forces )
Galilei number
Ga
G
a
=
g
L
3
ν
2
{\displaystyle \mathrm {Ga} ={\frac {g\,L^{3}}{\nu ^{2}}}}
Galileo Galilei
fluid mechanics (gravitational over viscous forces)
Görtler number
G
G
=
U
e
θ
ν
(
θ
R
)
1
/
2
{\displaystyle \mathrm {G} ={\frac {U_{e}\theta }{\nu }}\left({\frac {\theta }{R}}\right)^{1/2}}
Henry Görtler [de ]
fluid dynamics (boundary layer flow along a concave wall)
Goucher number [fr ]
Go
G
o
=
R
(
ρ
g
2
σ
)
1
/
2
{\displaystyle \mathrm {Go} =R\left({\frac {\rho g}{2\sigma }}\right)^{1/2}}
Frederick Shand Goucher (1888–1973)
fluid dynamics (wire coating problems)
Garcia-Atance number
GA
G
A
=
p
−
p
v
ρ
a
L
{\displaystyle \mathrm {G_{A}} ={\frac {p-p_{v}}{\rho aL}}}
Gonzalo Garcia-Atance Fatjo
phase change (ultrasonic cavitation onset, ratio of pressures over pressure due to acceleration)
Graetz number
Gz
G
z
=
D
H
L
R
e
P
r
{\displaystyle \mathrm {Gz} ={D_{H} \over L}\mathrm {Re} \,\mathrm {Pr} }
Leo Graetz
heat transfer , fluid mechanics (laminar flow through a conduit; also used in mass transfer )
Grashof number
Gr
G
r
L
=
g
β
(
T
s
−
T
∞
)
L
3
ν
2
{\displaystyle \mathrm {Gr} _{L}={\frac {g\beta (T_{s}-T_{\infty })L^{3}}{\nu ^{2}}}}
Franz Grashof
heat transfer , natural convection (ratio of the buoyancy to viscous force)
Hartmann number
Ha
H
a
=
B
L
(
σ
ρ
ν
)
1
2
{\displaystyle \mathrm {Ha} =BL\left({\frac {\sigma }{\rho \nu }}\right)^{\frac {1}{2}}}
Julius Hartmann (1881–1951)
magnetohydrodynamics (ratio of Lorentz to viscous forces)
Hagen number
Hg
H
g
=
−
1
ρ
d
p
d
x
L
3
ν
2
{\displaystyle \mathrm {Hg} =-{\frac {1}{\rho }}{\frac {\mathrm {d} p}{\mathrm {d} x}}{\frac {L^{3}}{\nu ^{2}}}}
Gotthilf Hagen
heat transfer (ratio of the buoyancy to viscous force in forced convection )
Iribarren number
Ir
I
r
=
tan
α
H
/
L
0
{\displaystyle \mathrm {Ir} ={\frac {\tan \alpha }{\sqrt {H/L_{0}}}}}
Ramón Iribarren
wave mechanics (breaking surface gravity waves on a slope)
Jakob number
Ja
J
a
=
c
p
,
f
(
T
w
−
T
s
a
t
)
h
f
g
{\displaystyle \mathrm {Ja} ={\frac {c_{p,f}(T_{w}-T_{sat})}{h_{fg}}}}
Max Jakob
heat transfer (ratio of sensible heat to latent heat during phase changes )
Jesus number
Je
J
e
=
σ
L
M
g
{\displaystyle \mathrm {Je} ={\frac {\sigma \,L}{M\,g}}}
Jesus
Surface tension (ratio of surface tension and weight)
Karlovitz number
Ka
K
a
=
k
t
c
{\displaystyle \mathrm {Ka} =kt_{c}}
Béla Karlovitz
turbulent combustion (characteristic flow time times flame stretch rate)
Kapitza number
Ka
K
a
=
σ
ρ
(
g
sin
β
)
1
/
3
ν
4
/
3
{\displaystyle \mathrm {Ka} ={\frac {\sigma }{\rho (g\sin \beta )^{1/3}\nu ^{4/3}}}}
Pyotr Kapitsa
fluid mechanics (thin film of liquid flows down inclined surfaces)
Keulegan–Carpenter number
KC
K
C
=
V
T
L
{\displaystyle \mathrm {K_{C}} ={\frac {V\,T}{L}}}
Garbis H. Keulegan (1890–1989) and Lloyd H. Carpenter
fluid dynamics (ratio of drag force to inertia for a bluff object in oscillatory fluid flow)
Knudsen number
Kn
K
n
=
λ
L
{\displaystyle \mathrm {Kn} ={\frac {\lambda }{L}}}
Martin Knudsen
gas dynamics (ratio of the molecular mean free path length to a representative physical length scale)
Kutateladze number
Ku
K
u
=
U
h
ρ
g
1
/
2
(
σ
g
(
ρ
l
−
ρ
g
)
)
1
/
4
{\displaystyle \mathrm {Ku} ={\frac {U_{h}\rho _{g}^{1/2}}{\left({\sigma g(\rho _{l}-\rho _{g})}\right)^{1/4}}}}
Samson Kutateladze
fluid mechanics (counter-current two-phase flow )[ 10]
Laplace number
La
L
a
=
σ
ρ
L
μ
2
{\displaystyle \mathrm {La} ={\frac {\sigma \rho L}{\mu ^{2}}}}
Pierre-Simon Laplace
fluid dynamics (free convection within immiscible fluids; ratio of surface tension to momentum -transport)
Lewis number
Le
L
e
=
α
D
=
S
c
P
r
{\displaystyle \mathrm {Le} ={\frac {\alpha }{D}}={\frac {\mathrm {Sc} }{\mathrm {Pr} }}}
Warren K. Lewis
heat and mass transfer (ratio of thermal to mass diffusivity )
Lift coefficient
C L
C
L
=
L
q
S
{\displaystyle C_{\mathrm {L} }={\frac {L}{q\,S}}}
aerodynamics (lift available from an airfoil at a given angle of attack )
Lockhart–Martinelli parameter
χ
{\displaystyle \chi }
χ
=
m
ℓ
m
g
ρ
g
ρ
ℓ
{\displaystyle \chi ={\frac {m_{\ell }}{m_{g}}}{\sqrt {\frac {\rho _{g}}{\rho _{\ell }}}}}
R. W. Lockhart and Raymond C. Martinelli
two-phase flow (flow of wet gases ; liquid fraction)[ 11]
Mach number
M or Ma
M
=
v
v
s
o
u
n
d
{\displaystyle \mathrm {M} ={\frac {v}{v_{\mathrm {sound} }}}}
Ernst Mach
gas dynamics (compressible flow ; dimensionless velocity )
Marangoni number
Mg
M
g
=
−
d
σ
d
T
L
Δ
T
η
α
{\displaystyle \mathrm {Mg} =-{\frac {\mathrm {d} \sigma }{\mathrm {d} T}}{\frac {L\Delta T}{\eta \alpha }}}
Carlo Marangoni
fluid mechanics (Marangoni flow ; thermal surface tension forces over viscous forces)
Markstein number
Ma
M
a
=
L
b
l
f
{\displaystyle \mathrm {Ma} ={\frac {L_{b}}{l_{f}}}}
George H. Markstein
turbulence , combustion (Markstein length to laminar flame thickness)
Morton number
Mo
M
o
=
g
μ
c
4
Δ
ρ
ρ
c
2
σ
3
{\displaystyle \mathrm {Mo} ={\frac {g\mu _{c}^{4}\,\Delta \rho }{\rho _{c}^{2}\sigma ^{3}}}}
Rose Morton
fluid dynamics (determination of bubble /drop shape)
Nusselt number
Nu
N
u
=
h
d
k
{\displaystyle \mathrm {Nu} ={\frac {hd}{k}}}
Wilhelm Nusselt
heat transfer (forced convection ; ratio of convective to conductive heat transfer)
Ohnesorge number
Oh
O
h
=
μ
ρ
σ
L
=
W
e
R
e
{\displaystyle \mathrm {Oh} ={\frac {\mu }{\sqrt {\rho \sigma L}}}={\frac {\sqrt {\mathrm {We} }}{\mathrm {Re} }}}
Wolfgang von Ohnesorge
fluid dynamics (atomization of liquids, Marangoni flow )
Péclet number
Pe
P
e
=
L
u
D
{\displaystyle \mathrm {Pe} ={\frac {Lu}{D}}}
or
P
e
=
L
u
α
{\displaystyle \mathrm {Pe} ={\frac {Lu}{\alpha }}}
Jean Claude Eugène Péclet
fluid mechanics (ratio of advective transport rate over molecular diffusive transport rate), heat transfer (ratio of advective transport rate over thermal diffusive transport rate)
Prandtl number
Pr
P
r
=
ν
α
=
c
p
μ
k
{\displaystyle \mathrm {Pr} ={\frac {\nu }{\alpha }}={\frac {c_{p}\mu }{k}}}
Ludwig Prandtl
heat transfer (ratio of viscous diffusion rate over thermal diffusion rate)
Pressure coefficient
CP
C
p
=
p
−
p
∞
1
2
ρ
∞
V
∞
2
{\displaystyle C_{p}={p-p_{\infty } \over {\frac {1}{2}}\rho _{\infty }V_{\infty }^{2}}}
aerodynamics , hydrodynamics (pressure experienced at a point on an airfoil ; dimensionless pressure variable)
Rayleigh number
Ra
R
a
x
=
g
β
ν
α
(
T
s
−
T
∞
)
x
3
{\displaystyle \mathrm {Ra} _{x}={\frac {g\beta }{\nu \alpha }}(T_{s}-T_{\infty })x^{3}}
John William Strutt, 3rd Baron Rayleigh
heat transfer (buoyancy versus viscous forces in free convection )
Reynolds number
Re
R
e
=
U
L
ρ
μ
=
U
L
ν
{\displaystyle \mathrm {Re} ={\frac {UL\rho }{\mu }}={\frac {UL}{\nu }}}
Osborne Reynolds
fluid mechanics (ratio of fluid inertial and viscous forces)[ 5]
Richardson number
Ri
R
i
=
g
h
U
2
=
1
F
r
2
{\displaystyle \mathrm {Ri} ={\frac {gh}{U^{2}}}={\frac {1}{\mathrm {Fr} ^{2}}}}
Lewis Fry Richardson
fluid dynamics (effect of buoyancy on flow stability; ratio of potential over kinetic energy )[ 12]
Roshko number
Ro
R
o
=
f
L
2
ν
=
S
t
R
e
{\displaystyle \mathrm {Ro} ={fL^{2} \over \nu }=\mathrm {St} \,\mathrm {Re} }
Anatol Roshko
fluid dynamics (oscillating flow, vortex shedding )
Rossby number
Ro
Ro
=
U
L
f
,
{\displaystyle {\text{Ro}}={\frac {U}{Lf}},}
Carl-Gustaf Rossby
fluid flow (geophysics , ratio of inertial force to Coriolis force )
Rouse number
P
P
=
w
s
κ
u
∗
{\displaystyle \mathrm {P} ={\frac {w_{s}}{\kappa u_{*}}}}
Hunter Rouse
Fluid dynamics (concentration profile of suspended sediment)
Schmidt number
Sc
S
c
=
ν
D
{\displaystyle \mathrm {Sc} ={\frac {\nu }{D}}}
Ernst Heinrich Wilhelm Schmidt (1892–1975)
mass transfer (viscous over molecular diffusion rate)[ 13]
Scruton number
Sc
S
c
=
2
δ
s
m
e
ρ
b
ref
2
{\displaystyle \mathrm {Sc} ={\frac {2\delta _{s}m_{e}}{\rho b_{\text{ref}}^{2}}}}
Christopher 'Kit' Scruton
Fluid dynamics (vortex resonance)
Shape factor
H
H
=
δ
∗
θ
{\displaystyle H={\frac {\delta ^{*}}{\theta }}}
boundary layer flow (ratio of displacement thickness to momentum thickness)
Sherwood number
Sh
S
h
=
K
L
D
{\displaystyle \mathrm {Sh} ={\frac {KL}{D}}}
Thomas Kilgore Sherwood
mass transfer (forced convection ; ratio of convective to diffusive mass transport)
Shields parameter
θ
θ
=
τ
(
ρ
s
−
ρ
)
g
D
{\displaystyle \theta ={\frac {\tau }{(\rho _{s}-\rho )gD}}}
Albert F. Shields
Fluid dynamics (motion of sediment)
Sommerfeld number
S
S
=
(
r
c
)
2
μ
N
P
{\displaystyle \mathrm {S} =\left({\frac {r}{c}}\right)^{2}{\frac {\mu N}{P}}}
Arnold Sommerfeld
hydrodynamic lubrication (boundary lubrication )[ 14]
Stanton number
St
S
t
=
h
c
p
ρ
V
=
N
u
R
e
P
r
{\displaystyle \mathrm {St} ={\frac {h}{c_{p}\rho V}}={\frac {\mathrm {Nu} }{\mathrm {Re} \,\mathrm {Pr} }}}
Thomas Ernest Stanton
heat transfer and fluid dynamics (forced convection )
Stokes number
Stk or Sk
S
t
k
=
τ
U
o
d
c
{\displaystyle \mathrm {Stk} ={\frac {\tau U_{o}}{d_{c}}}}
Sir George Stokes, 1st Baronet
particles suspensions (ratio of characteristic time of particle to time of flow)
Strouhal number
St
S
t
=
f
L
U
{\displaystyle \mathrm {St} ={\frac {fL}{U}}}
Vincenc Strouhal
Vortex shedding (ratio of characteristic oscillatory velocity to ambient flow velocity)
Stuart number
N
N
=
B
2
L
c
σ
ρ
U
=
H
a
2
R
e
{\displaystyle \mathrm {N} ={\frac {B^{2}L_{c}\sigma }{\rho U}}={\frac {\mathrm {Ha} ^{2}}{\mathrm {Re} }}}
John Trevor Stuart
magnetohydrodynamics (ratio of electromagnetic to inertial forces)
Taylor number
Ta
T
a
=
4
Ω
2
R
4
ν
2
{\displaystyle \mathrm {Ta} ={\frac {4\Omega ^{2}R^{4}}{\nu ^{2}}}}
G. I. Taylor
fluid dynamics (rotating fluid flows; inertial forces due to rotation of a fluid versus viscous forces )
Thoma number
σ
σ
=
N
P
S
H
h
p
u
m
p
{\displaystyle \mathrm {\sigma } ={\frac {\mathrm {NPSH} }{h_{\mathrm {pump} }}}}
Dieter Thoma (1881–1942)
multiphase flow (hydrodynamic cavitation , pressure over dynamic pressure )
Ursell number
U
U
=
H
λ
2
h
3
{\displaystyle \mathrm {U} ={\frac {H\,\lambda ^{2}}{h^{3}}}}
Fritz Ursell
wave mechanics (nonlinearity of surface gravity waves on a shallow fluid layer)
Wallis parameter
j ∗
j
∗
=
R
(
ω
ρ
μ
)
1
2
{\displaystyle j^{*}=R\left({\frac {\omega \rho }{\mu }}\right)^{\frac {1}{2}}}
Graham B. Wallis
multiphase flows (nondimensional superficial velocity )[ 15]
Weber number
We
W
e
=
ρ
v
2
l
σ
{\displaystyle \mathrm {We} ={\frac {\rho v^{2}l}{\sigma }}}
Moritz Weber
multiphase flow (strongly curved surfaces; ratio of inertia to surface tension )
Weissenberg number
Wi
W
i
=
γ
˙
λ
{\displaystyle \mathrm {Wi} ={\dot {\gamma }}\lambda }
Karl Weissenberg
viscoelastic flows (shear rate times the relaxation time)[ 16]
Womersley number
α
{\displaystyle \alpha }
α
=
R
(
ω
ρ
μ
)
1
2
{\displaystyle \alpha =R\left({\frac {\omega \rho }{\mu }}\right)^{\frac {1}{2}}}
John R. Womersley
biofluid mechanics (continuous and pulsating flows; ratio of pulsatile flow frequency to viscous effects )[ 17]
Zeldovich number
β
{\displaystyle \beta }
β
=
E
R
T
f
T
f
−
T
o
T
f
{\displaystyle \beta ={\frac {E}{RT_{f}}}{\frac {T_{f}-T_{o}}{T_{f}}}}
Yakov Zeldovich
fluid dynamics , Combustion (Measure of activation energy )