Dirichlet beta function

In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.

The Dirichlet beta function

Definition

edit

The Dirichlet beta function is defined as

 

or, equivalently,

 

In each case, it is assumed that Re(s) > 0.

Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex s-plane:[1]

 

Another equivalent definition, in terms of the Lerch transcendent, is:

 

which is once again valid for all complex values of s.

The Dirichlet beta function can also be written in terms of the polylogarithm function:

 

Also the series representation of Dirichlet beta function can be formed in terms of the polygamma function

 

but this formula is only valid at positive integer values of  .

Euler product formula

edit

It is also the simplest example of a series non-directly related to   which can also be factorized as an Euler product, thus leading to the idea of Dirichlet character defining the exact set of Dirichlet series having a factorization over the prime numbers.

At least for Re(s) ≥ 1:

 

where p≡1 mod 4 are the primes of the form 4n+1 (5,13,17,...) and p≡3 mod 4 are the primes of the form 4n+3 (3,7,11,...). This can be written compactly as

 

Functional equation

edit

The functional equation extends the beta function to the left side of the complex plane Re(s) ≤ 0. It is given by

 

where Γ(s) is the gamma function. It was conjectured by Euler in 1749 and proved by Malmsten in 1842.[2]

Specific values

edit

Positive integers

edit

For every odd positive integer  , the following equation holds:[3]

 

where   is the n-th Euler Number. This yields:

 
 
 
 

For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers greater than 3). The number   is known as Catalan's constant.

It has been proven that infinitely many numbers of the form  [4] and at least one of the numbers   are irrational.[5]

The even beta values may be given in terms of the polygamma functions and the Bernoulli numbers:[6]

 

We can also express the beta function for positive   in terms of the inverse tangent integral:

 
 

For every positive integer k:[citation needed]

 

where   is the Euler zigzag number.

s approximate value β(s) OEIS
1 0.7853981633974483096156608 A003881
2 0.9159655941772190150546035 A006752
3 0.9689461462593693804836348 A153071
4 0.9889445517411053361084226 A175572
5 0.9961578280770880640063194 A175571
6 0.9986852222184381354416008 A175570
7 0.9995545078905399094963465 A258814
8 0.9998499902468296563380671 A258815
9 0.9999496841872200898213589 A258816

Negative integers

edit

For negative odd integers, the function is zero:

 

For every negative even integer it holds:[3]

 .

It further is:

 .

Derivative

edit

We have:[3]

 

 

 

with   being Euler's constant and   being Catalan's constant. The last identity was derived by Malmsten in 1842.[2]

See also

edit

References

edit
  1. ^ Dirichlet Beta – Hurwitz zeta relation, Engineering Mathematics
  2. ^ a b Blagouchine, Iaroslav V. (2014-10-01). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". The Ramanujan Journal. 35 (1): 21–110. doi:10.1007/s11139-013-9528-5. ISSN 1572-9303.
  3. ^ a b c Weisstein, Eric W. "Dirichlet Beta Function". mathworld.wolfram.com. Retrieved 2024-08-08.
  4. ^ Rivoal, T.; Zudilin, W. (2003-08-01). "Diophantine properties of numbers related to Catalan's constant". Mathematische Annalen. 326 (4): 705–721. doi:10.1007/s00208-003-0420-2. ISSN 1432-1807.
  5. ^ Zudilin, Wadim (2019-05-31). "Arithmetic of Catalan's constant and its relatives". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 89 (1): 45–53. doi:10.1007/s12188-019-00203-w. ISSN 0025-5858.
  6. ^ Kölbig, K. S. (1996-11-12). "The polygamma function ψ(k)(x) for x=14 and x=34". Journal of Computational and Applied Mathematics. 75 (1): 43–46. doi:10.1016/S0377-0427(96)00055-6. ISSN 0377-0427.
  • Glasser, M. L. (1972). "The evaluation of lattice sums. I. Analytic procedures". J. Math. Phys. 14 (3): 409. Bibcode:1973JMP....14..409G. doi:10.1063/1.1666331.
  • J. Spanier and K. B. Oldham, An Atlas of Functions, (1987) Hemisphere, New York.