Draft:Maxwell's equations for a mechano-driven media system

  • Comment: The page cites work from one author and his students. Wikipedia is for established information with multiple independent, secondary sources. Please read more carefully the information for new users. Ldm1954 (talk) 13:29, 22 May 2024 (UTC)
  • Comment: As written May 22nd the units of the equations are wrong. Ldm1954 (talk) 13:25, 22 May 2024 (UTC)

Maxwell's equations for a mechano-driven media system (MEs-f-MDMS), are a set of coupled partial differential equations, obtained by the expansion from classical Maxwell's equations, which are utilized to describe the electromagnetism of multi-moving-media.[1] The equations include the object moving cases, which are about one observer who is observing two electromagnetic phenomena, which are associated with two moving objects/media located in the two reference frames that may relatively move at v << c, but may with acceleration.[2][3] Classical Maxwell's equations are to describe the electrodynamics in the region where there is no local medium movement, such as in vacuum or in stationary objects.

Two typical approaches for dealing with the electrodynamics of moving medium/objects

The partial differential form of Maxwell's equations with considering the moving of medium boundary, can be written as

where v is moving velocity of the origin of the reference frame S′, which is only time-dependent so that it can be viewed as a "rigid translation", and vr is the relative moving velocity of the point charge with respect to the reference frame S′, which is considered as the "rotation speed" that may be space- and time-dependent.

If the medium moves at a constant velocity: v = constant and vr = 0, the MEs-f-MDMS resume the format of the classical MEs, so there is no logic inconsistency with the existing theory.

The MEs-f-MDMS are a unification of the theory for electromagnetic generator/motor and the theory of electromagnetic waves

References

edit
  1. ^ Wang, Zhong Lin (January 2022). "On the expanded Maxwell's equations for moving charged media system – General theory, mathematical solutions and applications in TENG". Materials Today. 52: 348–363. doi:10.1016/j.mattod.2021.10.027.
  2. ^ Wang, Zhong Lin (2023-06-30). "The expanded Maxwell's equations for a mechano-driven media system that moves with acceleration". International Journal of Modern Physics B. 37 (16). arXiv:2207.13119. Bibcode:2023IJMPB..3750159W. doi:10.1142/S021797922350159X. ISSN 0217-9792.
  3. ^ Wang, Zhong Lin; Shao, Jiajia (June 2023). "Recent Progress on the Maxwell's Equations for Describing a Mechano-Driven Medium System with Multiple Moving Objects/Media". Electromagnetic Science. 1 (2): 1–16. doi:10.23919/emsci.2023.0017. ISSN 2836-8282.