If you would like to continue working on the submission, click on the "Edit" tab at the top of the window. If you have not resolved the issues listed above, your draft will be declined again and potentially deleted. If you need extra help, please ask us a question at the AfC Help Desk or get live help from experienced editors. Please do not remove reviewer comments or this notice until the submission is accepted.
Where to get help
If you need help editing or submitting your draft , please ask us a question at the AfC Help Desk or get live help from experienced editors. These venues are only for help with editing and the submission process, not to get reviews.
If you need feedback on your draft , or if the review is taking a lot of time, you can try asking for help on the talk page of a relevant WikiProject . Some WikiProjects are more active than others so a speedy reply is not guaranteed.
Improving your odds of a speedy review
To improve your odds of a faster review, tag your draft with relevant WikiProject tags using the button below. This will let reviewers know a new draft has been submitted in their area of interest. For instance, if you wrote about a female astronomer, you would want to add the Biography , Astronomy , and Women scientists tags.
Declined by Chaotic Enby 56 days ago. Last edited by Chaotic Enby 56 days ago. Reviewer: Inform author . Resubmit Please note that if the issues are not fixed, the draft will be declined again.
Probability distribution
Xgamma distribution Parameters
θ
>
0
,
{\displaystyle \theta >0,}
shape Support
x
∈
[
0
,
∞
)
{\displaystyle x\in [0,\infty )}
PDF
θ
2
(
1
+
θ
)
(
1
+
θ
2
x
2
)
e
−
θ
x
{\displaystyle {\frac {\theta ^{2}}{(1+\theta )}}\left(1+{\frac {\theta }{2}}{x^{2}}\right)e^{-\theta x}}
CDF
1
−
(
1
+
θ
+
θ
x
+
θ
2
x
2
2
)
(
1
+
θ
)
e
−
θ
x
{\displaystyle 1-{\frac {(1+\theta +\theta x+{\frac {\theta ^{2}x^{2}}{2}})}{(1+\theta )}}e^{-\theta x}}
Mean
(
θ
+
3
)
θ
(
1
+
θ
)
{\displaystyle {\frac {(\theta +3)}{\theta (1+\theta )}}}
Mode
1
+
1
−
2
θ
θ
,
for
θ
≤
1
/
2
{\displaystyle {\frac {1+{\sqrt {1-2\theta }}}{\theta }},{\text{ for }}\theta \leq 1/2}
Variance
(
θ
2
+
8
θ
+
3
)
θ
2
(
1
+
θ
)
2
{\displaystyle {\frac {(\theta ^{2}+8\theta +3)}{\theta ^{2}(1+\theta )^{2}}}}
Skewness
2
(
θ
3
+
15
θ
2
+
9
θ
+
3
)
(
θ
2
+
8
θ
+
3
)
3
/
2
{\displaystyle {\frac {2(\theta ^{3}+15\theta ^{2}+9\theta +3)}{(\theta ^{2}+8\theta +3)^{3/2}}}}
MGF
θ
2
(
1
+
θ
)
[
1
(
θ
−
t
)
+
θ
(
θ
−
t
)
3
]
{\displaystyle {\frac {\theta ^{2}}{(1+\theta )}}\left[{\frac {1}{(\theta -t)}}+{\frac {\theta }{(\theta -t)^{3}}}\right]}
CF
θ
2
(
1
+
θ
)
[
1
(
θ
−
i
t
)
+
θ
(
θ
−
i
t
)
3
]
{\displaystyle {\frac {\theta ^{2}}{(1+\theta )}}\left[{\frac {1}{(\theta -it)}}+{\frac {\theta }{(\theta -it)^{3}}}\right]}
In probability theory and statistics , the xgamma distribution is continuous probability distribution (introduced by Sen et al. in 2016 [1] ). This distribution is obtained as a special finite mixture of exponentia l and gamma distributions. This distribution is successfully used in modelling time-to-event or lifetime data sets coming from diverse fields.
Exponential distribution with parameter θ and gamma distribution with scale parameter θ and shape parameter 3 are mixed mixing proportions,
θ
(
1
+
θ
)
{\displaystyle {\frac {\theta }{(1+\theta )}}}
and
1
(
1
+
θ
)
{\displaystyle {\frac {1}{(1+\theta )}}}
, respectively, to obtain the density form of the distribution.
Probability density function
edit
The probability density function (pdf) of an xgamma distribution is[ 1]
f
(
x
;
θ
)
=
{
θ
2
(
1
+
θ
)
(
1
+
θ
2
x
2
)
e
−
θ
x
x
≥
0
,
0
x
<
0.
{\displaystyle f(x;\theta )={\begin{cases}{\frac {\theta ^{2}}{(1+\theta )}}\left(1+{\frac {\theta }{2}}{x^{2}}\right)e^{-\theta x}&x\geq 0,\\0&x<0.\end{cases}}}
Here θ > 0 is the parameter of the distribution, often called the shape parameter . The distribution is supported on the interval [0, ∞) . If a random variable X has this distribution, we write X ~ XG(θ ) .
Cumulative distribution function
edit
The cumulative distribution function is given by
F
(
x
;
θ
)
=
{
1
−
(
1
+
θ
+
θ
x
+
θ
2
x
2
2
)
(
1
+
θ
)
e
−
θ
x
x
≥
0
,
0
x
<
0.
{\displaystyle F(x;\theta )={\begin{cases}1-{\frac {(1+\theta +\theta x+{\frac {\theta ^{2}x^{2}}{2}})}{(1+\theta )}}e^{-\theta x}&x\geq 0,\\0&x<0.\end{cases}}}
Characteristic and generating functions
edit
The characteristic function of a random variable following xgamma distribution with parameter θ is given by[ 2]
ϕ
X
(
t
)
=
E
[
e
i
t
X
]
=
θ
2
(
1
+
θ
)
[
1
(
θ
−
i
t
)
+
θ
(
θ
−
i
t
)
3
]
;
t
∈
R
,
i
=
−
1
.
{\displaystyle \phi _{X}(t)=E[e^{itX}]={\frac {\theta ^{2}}{(1+\theta )}}\left[{\frac {1}{(\theta -it)}}+{\frac {\theta }{(\theta -it)^{3}}}\right];t\in \mathbb {R} ,i={\sqrt {-1}}.}
The moment generating function of xgamma distribution is given by
M
X
(
t
)
=
E
[
e
t
X
]
=
θ
2
(
1
+
θ
)
[
1
(
θ
−
t
)
+
θ
(
θ
−
t
)
3
]
;
t
∈
R
.
{\displaystyle M_{X}(t)=E[e^{tX}]={\frac {\theta ^{2}}{(1+\theta )}}\left[{\frac {1}{(\theta -t)}}+{\frac {\theta }{(\theta -t)^{3}}}\right];t\in \mathbb {R} .}
Mean, variance, moments, and mode
edit
The non-central moments of X , for
r
∈
N
{\displaystyle r\in \mathbb {N} }
are given by
μ
r
′
=
r
!
[
2
θ
+
(
r
+
1
)
(
r
+
2
)
]
2
θ
r
(
1
+
θ
)
.
{\displaystyle \mu _{r}'={\frac {r![2\theta +(r+1)(r+2)]}{2\theta ^{r}(1+\theta )}}.}
In particular,
The mean or expected value of a random variable X following xgamma distribution with parameter θ is given by
E
[
X
]
=
(
θ
+
3
)
θ
(
1
+
θ
)
.
{\displaystyle \operatorname {E} [X]={\frac {(\theta +3)}{\theta (1+\theta )}}.}
The
r
t
h
{\displaystyle r^{th}}
(
r
∈
N
)
{\displaystyle (r\in \mathbb {N} )}
order central moment of xgamma distribution can be obtained from the relation,
μ
r
=
E
[
(
X
−
μ
)
r
]
=
∑
j
=
0
r
(
r
j
)
μ
r
′
(
−
μ
)
r
−
j
,
{\displaystyle \mu _{r}=E[{(X-\mu )}^{r}]=\sum _{j=0}^{r}{\binom {r}{j}}\mu _{r}{'}(-{\mu })^{r-j},}
where
μ
{\displaystyle \mu }
is the mean of the distribution.
The variance of X is given by
Var
[
X
]
=
(
θ
2
+
8
θ
+
3
)
θ
2
(
1
+
θ
)
2
.
{\displaystyle \operatorname {Var} [X]={\frac {(\theta ^{2}+8\theta +3)}{\theta ^{2}(1+\theta )^{2}}}.}
The mode of xgamma distribution is given by
M
o
d
e
[
X
]
=
{
1
+
1
−
2
θ
θ
if
0
<
θ
≤
1
/
2
,
0
otherwise
.
{\displaystyle Mode[X]={\begin{cases}{\frac {1+{\sqrt {1-2\theta }}}{\theta }}&{\text{if}}&0<\theta \leq 1/2,\\0&{\text{otherwise}}.\end{cases}}}
Skewness and kurtosis
edit
The coefficients of skewness and kurtosis of xgamma distribution with parameter θ show that the distribution is positively skewed.
Measure of skewness:
β
1
=
μ
3
2
μ
2
3
=
2
(
θ
3
+
15
θ
2
+
9
θ
+
3
)
(
θ
2
+
8
θ
+
3
)
3
/
2
.
{\displaystyle {\sqrt {\beta _{1}}}={\sqrt {\frac {\mu _{3}^{2}}{\mu _{2}^{3}}}}={\frac {2(\theta ^{3}+15\theta ^{2}+9\theta +3)}{(\theta ^{2}+8\theta +3)^{3/2}}}.}
Measure of kurtosis:
β
2
=
μ
4
μ
2
2
=
3
(
5
θ
4
+
88
θ
3
+
310
θ
2
+
288
θ
+
177
)
(
θ
2
+
8
θ
+
3
)
2
.
{\displaystyle \beta _{2}={\frac {\mu _{4}}{\mu _{2}^{2}}}={\frac {3(5\theta ^{4}+88\theta ^{3}+310\theta ^{2}+288\theta +177)}{(\theta ^{2}+8\theta +3)^{2}}}.}
Among survival properties, failure rate or hazard rate function, mean residual life function and stochastic order relations are well established for xgamma distribution with parameter θ .
The survival function at time point t(> 0) is given by
S
(
t
;
θ
)
=
Pr
(
X
>
t
)
=
(
1
+
θ
+
θ
t
+
θ
2
t
2
2
)
(
1
+
θ
)
e
−
θ
t
.
{\displaystyle S(t;\theta )=\Pr(X>t)={\frac {(1+\theta +\theta t+{\frac {\theta ^{2}t^{2}}{2}})}{(1+\theta )}}e^{-\theta t}.}
Failure rate or Hazard rate function
edit
For xgamma distribution, the hazard rate (or failure rate) function is obtained as
h
(
t
;
θ
)
=
θ
2
(
1
+
θ
2
t
2
)
(
1
+
θ
+
θ
t
+
θ
2
2
t
2
)
.
{\displaystyle h(t;\theta )={\frac {\theta ^{2}(1+{\frac {\theta }{2}}t^{2})}{(1+\theta +\theta t+{\frac {\theta ^{2}}{2}}t^{2})}}.}
The hazard rate function in possesses the following properties.
lim
t
→
0
h
(
t
;
θ
)
=
θ
2
(
1
+
θ
)
=
lim
t
→
0
f
(
t
;
θ
)
.
{\displaystyle \lim _{t\to 0}h(t;\theta )={\frac {\theta ^{2}}{(1+\theta )}}=\lim _{t\to 0}f(t;\theta ).}
h
(
t
;
θ
)
{\displaystyle h(t;\theta )}
is an increasing function in
t
>
2
/
θ
.
{\displaystyle t>{\sqrt {2/\theta }}.}
θ
2
/
(
1
+
θ
)
<
h
(
t
;
θ
)
<
θ
.
{\displaystyle \theta ^{2}/(1+\theta )<h(t;\theta )<\theta .}
Mean residual life (MRL) function
edit
Mean residual life (MRL) function related to a life time probability distribution is an important characteristic useful in survival analysis and reliability engineering .
The MRL function for xgamma distribution is given by
m
(
t
;
θ
)
=
1
θ
+
(
2
+
θ
t
)
θ
(
1
+
θ
+
θ
t
+
θ
2
2
t
2
)
.
{\displaystyle m(t;\theta )={\frac {1}{\theta }}+{\frac {(2+\theta t)}{\theta (1+\theta +\theta t+{\frac {\theta ^{2}}{2}}t^{2})}}.}
This MRL function has the following properties.
lim
t
→
0
m
(
t
;
θ
)
=
E
[
X
]
=
(
θ
+
3
)
θ
(
1
+
θ
)
{\displaystyle \lim _{t\to 0}m(t;\theta )=E[X]={\frac {(\theta +3)}{\theta (1+\theta )}}}
.
m
(
t
;
θ
)
{\displaystyle m(t;\theta )}
in decreasing in t and
θ
{\displaystyle \theta }
with
1
θ
<
m
(
t
;
θ
)
<
(
θ
+
3
)
θ
(
1
+
θ
)
.
{\displaystyle {\frac {1}{\theta }}<m(t;\theta )<{\frac {(\theta +3)}{\theta (1+\theta )}}.}
Statistical inference
edit
Below are provided two classical methods, namely maximum of estimation for the unknown parameter of xgamma distribution under complete sample set up.
Parameter estimation
edit
Maximum likelihood estimation
edit
Let
x
=
(
x
1
,
x
2
,
…
,
x
n
)
{\displaystyle x=(x_{1},x_{2},\ldots ,x_{n})}
be n observations on a random sample
X
1
,
X
2
,
⋯
,
X
n
{\displaystyle X_{1},X_{2},\cdots ,X_{n}}
of size n drawn from xgamma distribution. Then, the likelihood function is given by
L
(
θ
|
x
)
=
∏
i
=
1
n
θ
2
(
1
+
θ
)
(
1
+
θ
2
x
i
2
)
e
−
θ
x
i
.
{\displaystyle L(\theta |x)=\prod _{i=1}^{n}{\frac {\theta ^{2}}{(1+\theta )}}\left(1+{\frac {\theta }{2}}x_{i}^{2}\right)e^{-\theta x_{i}}.}
The log-likelihood function is obtained as
l
(
θ
)
=
ln
L
(
θ
|
x
)
=
2
n
ln
θ
−
n
ln
(
1
+
θ
)
+
∑
i
=
1
n
ln
(
1
+
θ
2
x
i
2
)
−
θ
∑
i
=
1
n
x
i
.
{\displaystyle l(\theta )=\ln {L(\theta |x)}=2n\ln {\theta }-n\ln(1+\theta )+\sum _{i=1}^{n}\ln {\left(1+{\frac {\theta }{2}}x_{i}^{2}\right)}-\theta \sum _{i=1}^{n}x_{i}.}
To obtain maximum likelihood estimator (MLE) of
θ
{\displaystyle \theta }
,
θ
^
{\displaystyle {\hat {\theta }}}
(say), one can maximize the log-likelihood equation directly with respect to
θ
{\displaystyle \theta }
or can solve the non-linear equation,
∂
ln
L
(
θ
|
x
)
∂
θ
=
0.
{\displaystyle {\frac {\partial \ln {L(\theta |x)}}{\partial \theta }}=0.}
It is seen that
∂
ln
L
(
θ
|
x
)
∂
θ
=
0
{\displaystyle {\frac {\partial \ln {L(\theta |x)}}{\partial \theta }}=0}
cannot be solved analytically and hence numerical iteration technique, such as, Newton-Raphson algorithm is applied to solve.
The initial solution for such an iteration can be taken as
θ
0
=
n
∑
i
=
1
n
x
i
.
{\displaystyle \theta _{0}={\frac {n}{\sum _{i=1}^{n}x_{i}}}.}
Using this initial solution, we have,
θ
(
i
)
=
θ
(
i
−
1
)
−
l
(
θ
(
i
−
1
)
|
x
)
l
′
(
θ
(
i
−
1
)
|
x
)
{\displaystyle \theta ^{(i)}=\theta ^{(i-1)}-{\frac {l(\theta ^{(i-1)}|x)}{l^{'}(\theta ^{(i-1)}|x)}}}
for the ith iteration.
one chooses
θ
(
i
)
{\displaystyle \theta ^{(i)}}
such that
θ
(
i
)
≅
θ
(
i
−
1
)
{\displaystyle \theta ^{(i)}\cong \theta ^{(i-1)}}
.
Method of moments estimation
edit
Given a random sample
X
1
,
X
2
,
…
,
X
n
{\displaystyle X_{1},X_{2},\ldots ,X_{n}}
of size n from the xgamma distribution, the moment estimator for the parameter
θ
{\displaystyle \theta }
of xgamma distribution is obtained as follows.
Equate sample mean,
X
¯
=
1
n
∑
i
=
1
n
X
i
{\displaystyle {\bar {X}}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}}
with first order moment about origin to get
X
¯
=
(
θ
+
3
)
θ
(
1
+
θ
)
,
{\displaystyle {\bar {X}}={\frac {(\theta +3)}{\theta (1+\theta )}},}
which provides a quadratic equation in
θ
{\displaystyle \theta }
as
X
¯
θ
2
+
(
X
¯
−
1
)
θ
−
3
=
0.
{\displaystyle {\bar {X}}\theta ^{2}+({\bar {X}}-1)\theta -3=0.}
Solving it, one gets the moment estimator,
θ
M
^
{\displaystyle {\hat {\theta _{M}}}}
(say), of
θ
{\displaystyle \theta }
as
θ
^
M
=
−
(
X
¯
−
1
)
+
(
X
¯
−
1
)
2
+
12
X
¯
2
X
¯
for
X
¯
>
0.
{\displaystyle {\hat {\theta }}_{M}={\frac {-({\bar {X}}-1)+{\sqrt {({\bar {X}}-1)^{2}+12{\bar {X}}}}}{2{\bar {X}}}}\;{\text{for}}\;{\bar {X}}>0.}
Random variate generation
edit
To generate random data
X
i
;
i
=
1
,
2
,
…
,
n
,
{\displaystyle X_{i};i=1,2,\ldots ,n,}
from xgamma distribution with parameter
θ
{\displaystyle \theta }
, the following algorithm is proposed.
Generate
U
i
∼
u
n
i
f
o
r
m
(
0
,
1
)
,
i
=
1
,
2
,
…
,
n
.
{\displaystyle U_{i}\sim uniform(0,1),i=1,2,\ldots ,n.}
Generate
V
i
∼
e
x
p
(
θ
)
,
i
=
1
,
2
,
…
,
n
.
{\displaystyle V_{i}\sim exp(\theta ),i=1,2,\ldots ,n.}
Generate
W
i
∼
g
a
m
m
a
(
3
,
θ
)
,
i
=
1
,
2
,
…
,
n
.
{\displaystyle W_{i}\sim gamma(3,\theta ),i=1,2,\ldots ,n.}
If
U
i
≤
θ
/
(
1
+
θ
)
{\displaystyle U_{i}\leq \theta /(1+\theta )}
, then set
X
i
=
V
i
{\displaystyle X_{i}=V_{i}}
, otherwise, set
X
i
=
W
i
.
{\displaystyle X_{i}=W_{i}.}