In theoretical physics, the dual photon is a hypothetical elementary particle that is a dual of the photon under electric–magnetic duality which is predicted by some theoretical models,[3][4][5] including M-theory.[1][2]

Dual Photon
CompositionElementary particle
StatisticsBosonic
FamilyGauge boson
InteractionsElectromagnetic
StatusHypothetical
Theorized2000s[1][2][3][4][5]
Electric chargee
Spin1

It has been shown that including magnetic monopole in Maxwell's equations introduces a singularity. The only way to avoid the singularity is to include a second four-vector potential, called dual photon, in addition to the usual four-vector potential, photon.[6] Additionally, it is found that the standard Lagrangian of electromagnetism is not dual symmetric (i.e. symmetric under rotation between electric and magnetic charges) which causes problems for the energy–momentum, spin, and orbital angular momentum tensors. To resolve this issue, a dual symmetric Lagrangian of electromagnetism has been proposed,[3] which has a self-consistent separation of the spin and orbital degrees of freedom. The Poincaré symmetries imply that the dual electromagnetism naturally makes self-consistent conservation laws.[3]

Dual electromagnetism

edit

The free electromagnetic field is described by a covariant antisymmetric tensor   of rank 2 by

 

where   is the electromagnetic potential.

The dual electromagnetic field   is defined as

 

where   denotes the Hodge dual, and   is the Levi-Civita tensor

For the electromagnetic field and its dual field, we have

 
 

Then, for a given gauge field  , the dual configuration   is defined as[2]

 
 

where   the field potential of the dual photon, and non-locally linked to the original field potential  .

p-form electrodynamics

edit

A p-form generalization of Maxwell's theory of electromagnetism is described by a gauge-invariant 2-form   defined as

 .

which satisfies the equation of motion

 

where   is the Hodge star operator.

This implies the following action in the spacetime manifold  :[7][8]

 

where   is the dual of the gauge-invariant 2-form   for the electromagnetic field.

Dark photon

edit
 
This artist's impression shows the dark photon A′ decays into an electron and a positron.[9]

The dark photon is a spin-1 boson associated with a U(1) gauge field, which could be massless[10] and behaves like electromagnetism. But, it could be unstable and massive, quickly decays into electronpositron pairs, and interact with electrons.

The dark photon was first suggested in 2008 by Lotty Ackerman, Matthew R. Buckley, Sean M. Carroll, and Marc Kamionkowski to explain the 'g–2 anomaly' in experiment E821 at Brookhaven National Laboratory.[11] Nevertheless, it was ruled out in some experiments such as the PHENIX detector at the Relativistic Heavy Ion Collider at Brookhaven.[12]

In 2015, the Hungarian Academy of Sciences's Institute for Nuclear Research in Debrecen, Hungary, suggested the existence of a new, light spin-1 boson, dubbed the X17 particle, 34 times heavier than the electron[13] that decays into a pair of electron and positron with a combined energy of 17 MeV. In 2016, it was proposed that it is an X-boson with a mass of 16.7 MeV that explains the g−2 muon anomaly.[13][14]

See also

edit

References

edit
  1. ^ a b Tong, D.; Lambert, N. (2008). "Membranes on an Orbifold". Physical Review Letters. 101 (4): 041602. arXiv:0804.1114. Bibcode:2008PhRvL.101d1602L. doi:10.1103/PhysRevLett.101.041602. PMID 18764318. S2CID 655777.
  2. ^ a b c Bakas, I. (2010). "Dual photons and gravitons". Publ.Astron.Obs.Belgrade. 88: 113–132. arXiv:0910.1739. Bibcode:2010POBeo..88..113B.
  3. ^ a b c d Bliokh, K. Y.; Bekshaev, A. Y.; Nori, F. (2013). "Dual electromagnetism: helicity, spin, momentum and angular momentum". New Journal of Physics. 15 (3): 033026. arXiv:1208.4523. Bibcode:2013NJPh...15c3026B. doi:10.1088/1367-2630/15/3/033026. S2CID 14501052.
  4. ^ a b Elbistan, M.; Duval, C.; Horváthy, P. A.; Zhang, P.-M. (2016). "Duality and helicity: A symplectic viewpoint". Physics Letters B. 761: 265–268. arXiv:1608.01131. Bibcode:2016PhLB..761..265E. doi:10.1016/j.physletb.2016.08.041. S2CID 119176701.
  5. ^ a b Elbistan, M.; Horváthy, P. A.; Zhang, P.-M. (2017). "Duality and helicity: the photon wave function approach". Physics Letters A. 381 (30): 2375–2379. arXiv:1608.08573. Bibcode:2017PhLA..381.2375E. doi:10.1016/j.physleta.2017.05.042. S2CID 119180293.
  6. ^ Singleton, D. (1996). "Electromagnetism with magnetic charge and two photons". American Journal of Physics. 64 (4): 452–458. arXiv:1106.1505. Bibcode:1996AmJPh..64..452S. doi:10.1119/1.18191. S2CID 119714958.
  7. ^ Henneaux, M.; Teitelboim, C. (1986). "p-Form electrodynamics". Foundations of Physics. 16 (7): 593–617. Bibcode:1986FoPh...16..593H. doi:10.1007/BF01889624. S2CID 59436726.
  8. ^ Henneaux, M.; Bunster, C. (2011). "Action for twisted self-duality". Physical Review D. 83 (12): 125015. arXiv:1103.3621. Bibcode:2011PhRvD..83l5015B. doi:10.1103/PhysRevD.83.125015. S2CID 119268081.
  9. ^ "Viewpoint: New Light Shed on Dark Photons" (Press release). American Physical Society. 10 November 2014.
  10. ^ Carroll, Sean M. (October 29, 2008). "Dark photons". Retrieved 23 February 2015.
  11. ^ Bennett, G. W.; Bousquet, B.; Brown, H. N.; Bunce, G.; Carey, R. M.; Cushman, P.; Danby, G. T.; Debevec, P. T. (2006-04-07). "Final report of the E821 muon anomalous magnetic moment measurement at BNL". Physical Review D. 73 (7): 072003. arXiv:hep-ex/0602035. Bibcode:2006PhRvD..73g2003B. doi:10.1103/PhysRevD.73.072003. S2CID 53539306.
  12. ^ Walsh, Karen McNulty (February 19, 2015). "Data from RHIC, other experiments nearly rule out role of 'dark photons' as explanation for 'g-2' anomaly". PhysOrg. Retrieved 23 February 2015.
  13. ^ a b Cartlidge, Edwin (2016). "Has a Hungarian physics lab found a fifth force of nature?". Nature. doi:10.1038/nature.2016.19957. S2CID 124347962.
  14. ^ Feng, J. L.; Fornal, B.; Galon, I.; Gardner, S.; Smolinsky, J.; Tait, T. M. P.; Tanedo, P. (2016). "Protophobic Fifth-Force Interpretation of the Observed Anomaly in 8Be Nuclear Transitions". Physical Review Letters. 117 (7): 071803. arXiv:1604.07411. Bibcode:2016PhRvL.117g1803F. doi:10.1103/PhysRevLett.117.071803. PMID 27563952. S2CID 206279817.