Ehrenfest equations (named after Paul Ehrenfest) are equations which describe changes in specific heat capacity and derivatives of specific volume in second-order phase transitions. The Clausius–Clapeyron relation does not make sense for second-order phase transitions,[1] as both specific entropy and specific volume do not change in second-order phase transitions.

Quantitative consideration

edit

Ehrenfest equations are the consequence of continuity of specific entropy   and specific volume  , which are first derivatives of specific Gibbs free energy – in second-order phase transitions. If one considers specific entropy   as a function of temperature and pressure, then its differential is:  . As  , then the differential of specific entropy also is:

 ,

where   and   are the two phases which transit one into other. Due to continuity of specific entropy, the following holds in second-order phase transitions:  . So,

 

Therefore, the first Ehrenfest equation is:

 .

The second Ehrenfest equation is got in a like manner, but specific entropy is considered as a function of temperature and specific volume:

 

The third Ehrenfest equation is got in a like manner, but specific entropy is considered as a function of   and  :

 .

Continuity of specific volume as a function of   and   gives the fourth Ehrenfest equation:

 .

Limitations

edit

Derivatives of Gibbs free energy are not always finite. Transitions between different magnetic states of metals can't be described by Ehrenfest equations.

See also

edit

References

edit
  1. ^ Sivuhin D.V. General physics course. V.2. Thermodynamics and molecular physics. 2005