Set of elongated cupolae

Example pentagonal form
Faces n triangles
3n squares
1 n-gon
1 2n-gon
Edges 9n
Vertices 5n
Symmetry group Cnv, [n], (*nn)
Rotational group Cn, [n]+, (nn)
Dual polyhedron
Properties convex

In geometry, the elongated cupolae are an infinite set of polyhedra, constructed by adjoining an n-gonal cupola to an 2n-gonal prism.

There are three elongated cupolae that are Johnson solids made from regular triangles and square, and pentagons. Higher forms can be constructed with isosceles triangles. Adjoining a triangular prism to a cube also generates a polyhedron, but has two pairs of coplanar faces, so is not a Johnson solid. Higher forms can be constructed without regular faces.

Forms

edit
name faces
  elongated digonal cupola 2 triangles, 6+1 squares
  elongated triangular cupola (J18) 3+1 triangles, 9 squares, 1 hexagon
  elongated square cupola (J19) 4 triangles, 12+1 squares, 1 octagon
  elongated pentagonal cupola (J20) 5 triangles, 15 squares, 1 pentagon, 1 decagon
elongated hexagonal cupola 6 triangles, 18 squares, 1 hexagon, 1 dodecagon

See also

edit

References

edit
  • Norman W. Johnson, "Convex Solids with Regular Faces", Canadian Journal of Mathematics, 18, 1966, pages 169–200. Contains the original enumeration of the 92 solids and the conjecture that there are no others.
  • Victor A. Zalgaller (1969). Convex Polyhedra with Regular Faces. Consultants Bureau. No ISBN. The first proof that there are only 92 Johnson solids.