Elongated triangular pyramid

In geometry, the elongated triangular pyramid is one of the Johnson solids (J7). As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically (but not geometrically) self-dual.

Elongated triangular pyramid
TypeJohnson
J6J7J8
Faces4 triangles
3 squares
Edges12
Vertices7
Vertex configuration1(33)
3(3.42)
3(32.42)
Symmetry groupC3v, [3], (*33)
Rotation groupC3, [3]+, (33)
Dual polyhedronself
Propertiesconvex
Net
Johnson solid J7.

Construction

edit

The elongated triangular pyramid is constructed from a triangular prism by attaching regular tetrahedron onto one of its bases, a process known as elongation.[1] The tetrahedron covers an equilateral triangle, replacing it with three other equilateral triangles, so that the resulting polyhedron has four equilateral triangles and three squares as its faces.[2] A convex polyhedron in which all of the faces are regular polygons is called the Johnson solid, and the elongated triangular pyramid is among them, enumerated as the seventh Johnson solid  .[3]

Properties

edit

An elongated triangular pyramid with edge length   has a height, by adding the height of a regular tetrahedron and a triangular prism:[4]   Its surface area can be calculated by adding the area of all eight equilateral triangles and three squares:[2]   and its volume can be calculated by slicing it into a regular tetrahedron and a prism, adding their volume up:[2]:  

It has the three-dimensional symmetry group, the cyclic group   of order 6. Its dihedral angle can be calculated by adding the angle of the tetrahedron and the triangular prism:[5]

  • the dihedral angle of a tetrahedron between two adjacent triangular faces is  ;
  • the dihedral angle of the triangular prism between the square to its bases is  , and the dihedral angle between square-to-triangle, on the edge where tetrahedron and triangular prism are attached, is  ;
  • the dihedral angle of the triangular prism between two adjacent square faces is the internal angle of an equilateral triangle  .

References

edit
  1. ^ Rajwade, A. R. (2001). Convex Polyhedra with Regularity Conditions and Hilbert's Third Problem. Texts and Readings in Mathematics. Hindustan Book Agency. p. 84–89. doi:10.1007/978-93-86279-06-4. ISBN 978-93-86279-06-4.
  2. ^ a b c Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  3. ^ Uehara, Ryuhei (2020). Introduction to Computational Origami: The World of New Computational Geometry. Springer. p. 62. doi:10.1007/978-981-15-4470-5. ISBN 978-981-15-4470-5. S2CID 220150682.
  4. ^ Sapiña, R. "Area and volume of the Johnson solid  ". Problemas y Ecuaciones (in Spanish). ISSN 2659-9899. Retrieved 2020-09-09.
  5. ^ Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.


edit