This gene encodes a protein which is a member of the formin/diaphanous family of proteins. The gene is ubiquitously expressed but is found in abundance in the spleen. The encoded protein has sequence homology to diaphanous and formin proteins within the Formin Homology (FH)1 and FH2 domains. It also contains a coiled-coil domain, a collagen-like domain, two nuclear localization signals, and several potential PKC and PKA phosphorylation sites. It is a predominantly cytoplasmic protein and is expressed in a variety of human cell lines.[7]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Westendorf JJ, Mernaugh R, Hiebert SW (May 1999). "Identification and characterization of a protein containing formin homology (FH1/FH2) domains". Gene. 232 (2): 173–82. doi:10.1016/S0378-1119(99)00127-4. PMID10352228.
^Boehm MB, Milius TJ, Zhou Y, Westendorf JJ, Koka S (October 2005). "The mammalian formin FHOD1 interacts with the ERK MAP kinase pathway". Biochemical and Biophysical Research Communications. 335 (4): 1090–4. doi:10.1016/j.bbrc.2005.07.191. PMID16112087.
Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J (May 2003). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides". Nature Biotechnology. 21 (5): 566–9. doi:10.1038/nbt810. PMID12665801. S2CID23783563.
Tojo H, Kaieda I, Hattori H, Katayama N, Yoshimura K, Kakimoto S, et al. (July 2003). "The Formin family protein, formin homolog overexpressed in spleen, interacts with the insulin-responsive aminopeptidase and profilin IIa". Molecular Endocrinology. 17 (7): 1216–29. doi:10.1210/me.2003-0056. PMID12677009.
Takeya R, Sumimoto H (November 2003). "Fhos, a mammalian formin, directly binds to F-actin via a region N-terminal to the FH1 domain and forms a homotypic complex via the FH2 domain to promote actin fiber formation". Journal of Cell Science. 116 (Pt 22): 4567–75. doi:10.1242/jcs.00769. PMID14576350. S2CID25675089.
Lehner B, Semple JI, Brown SE, Counsell D, Campbell RD, Sanderson CM (January 2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region". Genomics. 83 (1): 153–67. doi:10.1016/S0888-7543(03)00235-0. PMID14667819.
Katoh M, Katoh M (April 2004). "Identification and characterization of human FHOD3 gene in silico". International Journal of Molecular Medicine. 13 (4): 615–20. doi:10.3892/ijmm.13.4.615. PMID15010865.
Westendorf JJ, Koka S (May 2004). "Identification of FHOD1-binding proteins and mechanisms of FHOD1-regulated actin dynamics". Journal of Cellular Biochemistry. 92 (1): 29–41. doi:10.1002/jcb.20031. PMID15095401. S2CID40202935.
Madrid R, Gasteier JE, Bouchet J, Schröder S, Geyer M, Benichou S, Fackler OT (January 2005). "Oligomerization of the diaphanous-related formin FHOD1 requires a coiled-coil motif critical for its cytoskeletal and transcriptional activities". FEBS Letters. 579 (2): 441–8. doi:10.1016/j.febslet.2004.12.009. PMID15642356. S2CID23740212.
Gasteier JE, Schroeder S, Muranyi W, Madrid R, Benichou S, Fackler OT (May 2005). "FHOD1 coordinates actin filament and microtubule alignment to mediate cell elongation". Experimental Cell Research. 306 (1): 192–202. doi:10.1016/j.yexcr.2005.02.006. PMID15878344.