The Gimlet was an unguided air-to-air and air-to-surface rocket developed by the United States Navy during the early 1950s. Although it proved successful in testing and was ordered into large-scale production, the arrival of the guided missile as a practical and reliable weapon resulted in the cancellation of the Gimlet rocket in 1957.
Gimlet | |
---|---|
Type | Unguided rocket |
Place of origin | United States |
Production history | |
Designed | 1954–1956 |
Manufacturer | Naval Ordnance Test Station |
Produced | 1956–1957 |
No. built | 15,000 |
Specifications | |
Diameter | 2 inches (51 mm) |
Propellant | Solid fuel |
Guidance system | Unguided |
Design and development
editThe development of the Gimlet rocket began in 1951, with the initiation of development of a 1.5-inch (38 mm) rocket for air-to-air use.[1] Work on the rocket was conducted at the Naval Ordnance Test Station (NOTS) at China Lake, California, and the project was begun at the behest of North American Aviation.[1] in addition, the 1.5-inch rocket was felt as the ideal caliber to 'fill in a gap' in the U.S. Navy's rocket inventory;[1] studies indicated that aircraft could carry six times the number of 1.5-inch rockets as opposed to the then-in-service 2.75-inch (70 mm) Folding Fin Aerial Rocket.[2]
In 1952, however, the Bureau of Ordnance decided that neither the 1.5-inch or 2.75-inch rocket was required; an earlier directive to develop a 2-inch (51 mm) rocket was still outstanding, and it was felt that standardizing on a single caliber of rocket would be in the Navy's best interest.[2] NOTS had initiated development of a rocket of the 2-inch caliber prior to the outbreak of the Korean War; the concept had been shelved with the war effort requiring higher-priority projects such as the Ram anti-tank rocket to be prioritized; now, however, the project was dusted off and development resumed under the name "Gimlet"[2] – a name that, it was said, meant the rocket was to be a "small anti-MiG" weapon; "Gim" being "MiG" backwards, with an added diminutive.[3]
Gimlet was primarily intended for use in the air-to-air role.[4] The rocket would use a modified version of the FFAR's fuse, reduced in size to fit the smaller rocket;[2] the warhead used for Gimlet took advantage of the latest advancements in explosives technology, and, combined with the advanced fuse, would detonate inside the target aircraft, instead of upon contact.[5] The rocket used a thin-walled aluminum body, also based on FFAR work;[2] the motor used an eight-point star configuration to ensure even burning.[6]
Operational history
editTesting of the Gimlet began in 1954.[7] In the initial test, a FJ-2 Fury shot down a F6F Hellcat target drone, proving the rocket's effectiveness in the air-to-air role.[6] Early launchers carried four rockets, while seven- and 19-round models were developed as well.[8] A six-round clip capable of fitting the internal rocket bays of the F4D Skyray interceptor was also developed.[8]
Following a flyoff against the T-214 rocket, which indicated the necessity to modify the rocket motor to reduce the Gimlet's visual signature,[9] the Navy directed the development of a modified, 'hybrid' rocket, using the T-214's tail; this became known as "T-Gimlet".[9] The modified rocket was considered to be suitable for the Navy's purposes; both the original Gimlet and the T-Gimlet were ordered for production, a 5 million dollar USD contract being allotted to start production at the Shumaker Naval Ammunition Depot in Arkansas.[9]
Despite the seeming success, however, the Gimlet was already becoming obsolete; guided missiles were now considered to be the wave of the future. Production of Gimlet was cancelled in early 1957, after production of 15,000 rockets; that October, the T-Gimlet version was cancelled as well.[9] Although the missile age meant that Gimlet did not enter operational service, the production processes developed for the rocket would be modified and used in the production of the AIM-9 Sidewinder air-to-air missile.[9]
References
editNotes
editBibliography
edit- Babcock, Elizabeth (2008). Magnificent Mavericks: transition of the Naval Ordnance Test Station from rocket station to research, development, test and evaluation center, 1948–58. History of the Navy at China Lake, California. Vol. 3. Washington, DC: Government Printing Office. ISBN 978-0-945274-56-8. Retrieved 2011-01-08.
- Carelone, Joseph (1993). Tactical Missile Warheads. Progress in Astronautics and Aeronautics. Reston, VA: American Institute of Aeronautics and Astronautics. ISBN 978-1-56347-067-7. Retrieved 2010-01-11.
- Parsch, Andreas (2007). "(Other): Missile Scrapbook". Directory of U.S. Military Rockets and Missiles. designation-systems.net. Retrieved 2011-01-11.