In algebraic geometry, a new scheme (e.g. an algebraic variety) can be obtained by gluing existing schemes through gluing maps.

Statement

edit

Suppose there is a (possibly infinite) family of schemes   and for pairs  , there are open subsets   and isomorphisms  . Now, if the isomorphisms are compatible in the sense: for each  ,

  1.  ,
  2.  ,
  3.   on  ,

then there exists a scheme X, together with the morphisms   such that[1]

  1.   is an isomorphism onto an open subset of X,
  2.  
  3.  
  4.   on  .

Examples

edit

Projective line

edit
 
The projective line is obtained by gluing two affine lines so that the origin and illusionary   on one line corresponds to illusionary   and the origin on the other line, respectively.

Let   be two copies of the affine line over a field k. Let   be the complement of the origin and   defined similarly. Let Z denote the scheme obtained by gluing   along the isomorphism   given by  ; we identify   with the open subsets of Z.[2] Now, the affine rings   are both polynomial rings in one variable in such a way

  and  

where the two rings are viewed as subrings of the function field  . But this means that  ; because, by definition,   is covered by the two open affine charts whose affine rings are of the above form.

Affine line with doubled origin

edit

Let   be as in the above example. But this time let   denote the scheme obtained by gluing   along the isomorphism   given by  .[3] So, geometrically,   is obtained by identifying two parallel lines except the origin; i.e., it is an affine line with the doubled origin. (It can be shown that Z is not a separated scheme.) In contrast, if two lines are glued so that origin on the one line corresponds to the (illusionary) point at infinity for the other line; i.e, use the isomorphism  , then the resulting scheme is, at least visually, the projective line  .

Fiber products and pushouts of schemes

edit

The category of schemes admits finite pullbacks and in some cases finite pushouts;[4] they both are constructed by gluing affine schemes. For affine schemes, fiber products and pushouts correspond to tensor products and fiber squares of algebras.

References

edit
  1. ^ Hartshorne 1977, Ch. II, Exercise 2.12.
  2. ^ Vakil 2017, § 4.4.6.
  3. ^ Vakil 2017, § 4.4.5.
  4. ^ "Section 37.14 (07RS): Pushouts in the category of schemes, I—The Stacks project".

Further reading

edit