In commutative and homological algebra, the grade of a finitely generated module over a Noetherian ring is a cohomological invariant defined by vanishing of Ext-modules[1]

For an ideal the grade is defined via the quotient ring viewed as a module over

The grade is used to define perfect ideals. In general we have the inequality

where the projective dimension is another cohomological invariant.

The grade is tightly related to the depth, since

References

edit
  1. ^ Matsumura, Hideyuki (1987). Commutative Ring Theory. Cambridge: Cambridge University Press. p. 131. ISBN 9781139171762.