Simplified version by Feller
edit
William Feller gives the following simplified form for this theorem:[ 2]
Suppose that
f
(
t
)
{\displaystyle f(t)}
is a non-negative and continuous function for
t
≥
0
{\displaystyle t\geq 0}
, having finite Laplace transform
F
(
s
)
=
∫
0
∞
e
−
s
t
f
(
t
)
d
t
{\displaystyle F(s)=\int _{0}^{\infty }e^{-st}f(t)\,dt}
for
s
>
0
{\displaystyle s>0}
. Then
F
(
s
)
{\displaystyle F(s)}
is well defined for any complex value of
s
=
x
+
i
y
{\displaystyle s=x+iy}
with
x
>
0
{\displaystyle x>0}
. Suppose that
F
{\displaystyle F}
verifies the following conditions:
1. For
y
≠
0
{\displaystyle y\neq 0}
the function
F
(
x
+
i
y
)
{\displaystyle F(x+iy)}
(which is regular on the right half-plane
x
>
0
{\displaystyle x>0}
) has continuous boundary values
F
(
i
y
)
{\displaystyle F(iy)}
as
x
→
+
0
{\displaystyle x\to +0}
, for
x
≥
0
{\displaystyle x\geq 0}
and
y
≠
0
{\displaystyle y\neq 0}
, furthermore for
s
=
i
y
{\displaystyle s=iy}
it may be written as
F
(
s
)
=
C
s
+
ψ
(
s
)
,
{\displaystyle F(s)={\frac {C}{s}}+\psi (s),}
where
ψ
(
i
y
)
{\displaystyle \psi (iy)}
has finite derivatives
ψ
′
(
i
y
)
,
…
,
ψ
(
r
)
(
i
y
)
{\displaystyle \psi '(iy),\ldots ,\psi ^{(r)}(iy)}
and
ψ
(
r
)
(
i
y
)
{\displaystyle \psi ^{(r)}(iy)}
is bounded in every finite interval ;
2. The integral
∫
0
∞
e
i
t
y
F
(
x
+
i
y
)
d
y
{\displaystyle \int _{0}^{\infty }e^{ity}F(x+iy)\,dy}
converges uniformly with respect to
t
≥
T
{\displaystyle t\geq T}
for fixed
x
>
0
{\displaystyle x>0}
and
T
>
0
{\displaystyle T>0}
;
3.
F
(
x
+
i
y
)
→
0
{\displaystyle F(x+iy)\to 0}
as
y
→
±
∞
{\displaystyle y\to \pm \infty }
, uniformly with respect to
x
≥
0
{\displaystyle x\geq 0}
;
4.
F
′
(
i
y
)
,
…
,
F
(
r
)
(
i
y
)
{\displaystyle F'(iy),\ldots ,F^{(r)}(iy)}
tend to zero as
y
→
±
∞
{\displaystyle y\to \pm \infty }
;
5. The integrals
∫
−
∞
y
1
e
i
t
y
F
(
r
)
(
i
y
)
d
y
{\displaystyle \int _{-\infty }^{y_{1}}e^{ity}F^{(r)}(iy)\,dy}
and
∫
y
2
∞
e
i
t
y
F
(
r
)
(
i
y
)
d
y
{\displaystyle \int _{y_{2}}^{\infty }e^{ity}F^{(r)}(iy)\,dy}
converge uniformly with respect to
t
≥
T
{\displaystyle t\geq T}
for fixed
y
1
<
0
{\displaystyle y_{1}<0}
,
y
2
>
0
{\displaystyle y_{2}>0}
and
T
>
0
{\displaystyle T>0}
.
Under these conditions
lim
t
→
∞
t
r
[
f
(
t
)
−
C
]
=
0.
{\displaystyle \lim _{t\to \infty }t^{r}[f(t)-C]=0.}
A more detailed version is given in.[ 3]
Suppose that
f
(
t
)
{\displaystyle f(t)}
is a continuous function for
t
≥
0
{\displaystyle t\geq 0}
, having Laplace transform
F
(
s
)
=
∫
0
∞
e
−
s
t
f
(
t
)
d
t
{\displaystyle F(s)=\int _{0}^{\infty }e^{-st}f(t)\,dt}
with the following properties
1. For all values
s
=
x
+
i
y
{\displaystyle s=x+iy}
with
x
>
a
{\displaystyle x>a}
the function
F
(
s
)
=
F
(
x
+
i
y
)
{\displaystyle F(s)=F(x+iy)}
is regular ;
2. For all
x
>
a
{\displaystyle x>a}
, the function
F
(
x
+
i
y
)
{\displaystyle F(x+iy)}
, considered as a function of the variable
y
{\displaystyle y}
, has the Fourier property ("Fourierschen Charakter besitzt") defined by Haar as for any
δ
>
0
{\displaystyle \delta >0}
there is a value
ω
{\displaystyle \omega }
such that for all
t
≥
T
{\displaystyle t\geq T}
|
∫
α
β
e
i
y
t
F
(
x
+
i
y
)
d
y
|
<
δ
{\displaystyle {\Big |}\,\int _{\alpha }^{\beta }e^{iyt}F(x+iy)\,dy\;{\Big |}<\delta }
whenever
α
,
β
≥
ω
{\displaystyle \alpha ,\beta \geq \omega }
or
α
,
β
≤
−
ω
{\displaystyle \alpha ,\beta \leq -\omega }
.
3. The function
F
(
s
)
{\displaystyle F(s)}
has a boundary value for
ℜ
s
=
a
{\displaystyle \Re s=a}
of the form
F
(
s
)
=
∑
j
=
1
N
c
j
(
s
−
s
j
)
ρ
j
+
ψ
(
s
)
{\displaystyle F(s)=\sum _{j=1}^{N}{\frac {c_{j}}{(s-s_{j})^{\rho _{j}}}}+\psi (s)}
where
s
j
=
a
+
i
y
j
{\displaystyle s_{j}=a+iy_{j}}
and
ψ
(
a
+
i
y
)
{\displaystyle \psi (a+iy)}
is an
n
{\displaystyle n}
times differentiable function of
y
{\displaystyle y}
and such that the derivative
|
d
n
ψ
(
a
+
i
y
)
d
y
n
|
{\displaystyle \left|{\frac {d^{n}\psi (a+iy)}{dy^{n}}}\right|}
is bounded on any finite interval (for the variable
y
{\displaystyle y}
)
4. The derivatives
d
k
F
(
a
+
i
y
)
d
y
k
{\displaystyle {\frac {d^{k}F(a+iy)}{dy^{k}}}}
for
k
=
0
,
…
,
n
−
1
{\displaystyle k=0,\ldots ,n-1}
have zero limit for
y
→
±
∞
{\displaystyle y\to \pm \infty }
and for
k
=
n
{\displaystyle k=n}
has the Fourier property as defined above.
5. For sufficiently large
t
{\displaystyle t}
the following hold
lim
y
→
±
∞
∫
a
+
i
y
x
+
i
y
e
s
t
F
(
s
)
d
s
=
0
{\displaystyle \lim _{y\to \pm \infty }\int _{a+iy}^{x+iy}e^{st}F(s)\,ds=0}
Under the above hypotheses we have the asymptotic formula
lim
t
→
∞
t
n
e
−
a
t
[
f
(
t
)
−
∑
j
=
1
N
c
j
Γ
(
ρ
j
)
e
s
j
t
t
ρ
j
−
1
]
=
0.
{\displaystyle \lim _{t\to \infty }t^{n}e^{-at}{\Big [}f(t)-\sum _{j=1}^{N}{\frac {c_{j}}{\Gamma (\rho _{j})}}e^{s_{j}t}t^{\rho _{j}-1}{\Big ]}=0.}