A habitat cascade is a common type of a facilitation cascade.[clarification needed][1] where “indirect positive effects on focal organisms are mediated by successive formation or modification of biogenic habitat”.[2]

A habitat cascade is composed of at least three organisms: a primary habitat former or modifier; a secondary habitat former or modifier; and a focal organism that utilizes the secondary habitat former or modifier. For example, primary habitat forming trees can provide habitat for secondary habitat forming epiphytes, lianas, or vines that again can provide habitat to focal organisms like insects and birds.[3][4]

The primary vs. secondary habitat formers are sometimes referred to as ultimate vs. proximate habitat formers,[5] basal vs. intermediate habitat formers,[2] primary vs. secondary ecosystem engineers,[6] primary vs. secondary foundation species,[7] basibionts vs. epibionts, basizoids (if animal) or basiphytes (if plant) vs. epizooids (if animal) or epiphytes (if plant),[8] or hosts vs. structural parasites.[9] Focal organisms have been referred to as clients, end-users, habitat-users, inhabitants or hyperepibionts[2][10][11]

Secondary habitat formers are typically attached to,[3][12][13][14] entangled around,[15][16] or embedded within[17][18] the primary habitat former. Habitat cascades are strongest when the secondary habitat former is more effective than the primary habitat former at allowing focal organisms to avoid stress and enemies, and find resources and other facilitators.[11]

Habitat cascades promote increased biodiversity in ecosystems dominated by large and long-lived sessile or slow-moving structural organisms.[2][11] For example, habitat cascades have been documented in tropical forests,[4][14][15][19][20] temperate forests,[3][13][21][22] salt marshes,[1][23] coral reefs,[24][25] seagrass beds,[26][27][28][16] mangrove stands,[15][29] polychaete gardens,[2] seaweed covered rocky coasts[12] and mollusc reefs.[30]

References

edit
  1. ^ a b Altieri, Andrew H.; Silliman, Brian R.; Bertness, Mark D. (2 January 2007). "Hierarchical Organization via a Facilitation Cascade in Intertidal Cordgrass Bed Communities". The American Naturalist. 169 (2): 195–206. doi:10.1086/510603. ISSN 0003-0147. PMID 17211804.
  2. ^ a b c d e Thomsen, Mads S.; Wernberg, Thomas; Altieri, Andrew; Tuya, Fernando; Gulbransen, Dana; McGlathery, Karen J.; Holmer, Marianne; Silliman, Brian R. (2010-05-11). "Habitat Cascades: The Conceptual Context and Global Relevance of Facilitation Cascades via Habitat Formation and Modification". Integrative and Comparative Biology. 50 (2): 158–175. doi:10.1093/icb/icq042. ISSN 1557-7023. PMID 21558196.
  3. ^ a b c Angelini, Christine; Silliman, Brian R. (1 January 2014). "Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree–epiphyte system". Ecology. 95 (1): 185–196. doi:10.1890/13-0496.1. ISSN 0012-9658. PMID 24649658.
  4. ^ a b Cruz-AngóN, Andrea; Greenberg, Russell (22 February 2005). "Are epiphytes important for birds in coffee plantations? An experimental assessment". Journal of Applied Ecology. 42 (1): 150–159. doi:10.1111/j.1365-2664.2004.00983.x. ISSN 0021-8901.
  5. ^ Thomsen, M. S.; McGlathery, K. (2005-01-01). "Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea". Estuarine, Coastal and Shelf Science. 62 (1): 63–73. doi:10.1016/j.ecss.2004.08.007. ISSN 0272-7714.
  6. ^ Gribben, Paul E.; Byers, James E.; Clements, Michael; McKenzie, Louise A.; Steinberg, Peter D.; Wright, Jeffrey T. (13 October 2009). "Behavioural interactions between ecosystem engineers control community species richness". Ecology Letters. 12 (11): 1127–1136. doi:10.1111/j.1461-0248.2009.01366.x. ISSN 1461-023X.
  7. ^ Angelini, C., et al., Interactions among foundation species and their consequences for community organization, biodiversity, and conservation. BioScience, 2011. 61: p. 782-789.
  8. ^ Wahl, M., Epibiosis Ecology, Effects and Defences Ecological Studies, Marine Hard Bottom Communities, Part 1, 2009. 206: p. 61-72.
  9. ^ Stevens, George C. (1 February 1987). "Lianas as Structural Parasites: The Bursera Simaruba Example". Ecology. 68 (1): 77–81. doi:10.2307/1938806. ISSN 0012-9658. JSTOR 1938806.
  10. ^ Fernandez-Leborans, Gregorio; Dávila, Patricia; Cerezo, Eva; Contreras, Cristina (August 2013). "Epibiosis and hyperepibiosis on Pagurus bernhardus (Crustacea: Decapoda) from the west Coast of Scotland". Journal of the Marine Biological Association of the United Kingdom. 93 (5): 1351–1362. doi:10.1017/S0025315412001610. ISSN 0025-3154.
  11. ^ a b c Thomsen, Mads Solgaard; Wernberg, Thomas (2014-02-22). "On the generality of cascading habitat-formation". Proceedings of the Royal Society B: Biological Sciences. 281 (1777): 20131994. doi:10.1098/rspb.2013.1994. ISSN 0962-8452. PMC 3896006. PMID 24403322.
  12. ^ a b Thomsen, Mads S.; Metcalfe, Isis; South, Paul; Schiel, David R. (2015-07-01). "A host-specific habitat former controls biodiversity across ecological transitions in a rocky intertidal facilitation cascade". Marine and Freshwater Research. 67 (1): 144–152. doi:10.1071/MF14152. ISSN 1448-6059.
  13. ^ a b Watson, David M.; Herring, Matthew (2012-09-22). "Mistletoe as a keystone resource: an experimental test". Proceedings of the Royal Society B: Biological Sciences. 279 (1743): 3853–3860. doi:10.1098/rspb.2012.0856. ISSN 0962-8452. PMC 3415901. PMID 22787026.
  14. ^ a b Yanoviak, Stephen P.; Berghoff, Stefanie M.; Linsenmair, K. Eduard; Zotz, Gerhard (2011). "Effects of an Epiphytic Orchid on Arboreal Ant Community Structure in Panama". Biotropica. 43 (6): 731–737. doi:10.1111/j.1744-7429.2011.00764.x. ISSN 0006-3606. JSTOR 41419473.
  15. ^ a b c Bishop, Melanie J.; Byers, James E.; Marcek, Benjamin J.; Gribben, Paul E. (June 2012). "Density-dependent facilitation cascades determine epifaunal community structure in temperate Australian mangroves". Ecology. 93 (6): 1388–1401. doi:10.1890/10-2296.1. ISSN 0012-9658. PMID 22834379.
  16. ^ a b Thomsen, Mads Solgaard (11 August 2010). "Experimental evidence for positive effects of invasive seaweed on native invertebrates via habitat-formation in a seagrass bed". Aquatic Invasions. 5 (4): 341–346. doi:10.3391/ai.2010.5.4.02.
  17. ^ Altieri, Andrew H.; van Wesenbeeck, Bregje K.; Bertness, Mark D.; Silliman, Brian R. (1 May 2010). "Facilitation cascade drives positive relationship between native biodiversity and invasion success". Ecology. 91 (5): 1269–1275. doi:10.1890/09-1301.1. ISSN 0012-9658. PMID 20503860.
  18. ^ Angelini, Christine; van der Heide, Tjisse; Griffin, John N.; Morton, Joseph P.; Derksen-Hooijberg, Marlous; Lamers, Leon P. M.; Smolders, Alfons J. P.; Silliman, Brian R. (2015-07-22). "Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes". Proceedings of the Royal Society B: Biological Sciences. 282 (1811): 20150421. doi:10.1098/rspb.2015.0421. ISSN 0962-8452. PMC 4528541. PMID 26136442.
  19. ^ Cruz-Angón, Andrea; Baena, Martha L.; Greenberg, Russell (September 2009). "The contribution of epiphytes to the abundance and species richness of canopy insects in a Mexican coffee plantation". Journal of Tropical Ecology. 25 (5): 453–463. doi:10.1017/S0266467409990125. ISSN 1469-7831.
  20. ^ Stuntz, Sabine; Linder, Christian; Linsenmair, Karl Eduard; Simon, Ulrich; Zotz, Gerhard (2003-01-01). "Do non-myrmocophilic epiphytes influence community structure of arboreal ants?". Basic and Applied Ecology. 4 (4): 363–373. doi:10.1078/1439-1791-00170. ISSN 1439-1791.
  21. ^ Díaz, I., et al., A field experiment links forest structure and biodiversity: epiphytes enhance canopy invertebrates in Chilean forests. Ecosphere, 2012. 3(1): p. 3:art5.
  22. ^ Watson, D.M., Effects of mistletoe on diversity: a case-study from southern New South Wales. Emu, 2002. 102(3): p. 275-281.
  23. ^ Dijkstra, J.A., J. Boudreau, and M. Dionne, Species‐specific mediation of temperature and community interactions by multiple foundation species. Oikos, 2012. 121(5): p. 646-654.
  24. ^ Bergsma, G.S., Coral mutualists enhance fish abundance and diversity through a morphology-mediated facilitation cascade. Marine Ecology Progress Series, 2012. 451: p. 151-161.
  25. ^ Bergsma, G.S., Mutualists alter coral susceptibility and response to biotic disturbance through cascading trait-mediated indirect interactions. Coral Reefs, 2012.
  26. ^ Edgar, G.J. and A.I. Robertson, The influence of seagrass structure on the distribution and abundance of mobile epifauna: pattern and processes in a Western Australian Amphibolis bed. Journal of Experimental Marine Biology and Ecology, 1992. 160: p. 13-31.
  27. ^ Hall, M. and S. Bell, Response of small motile epifauna to complexity of epiphytic algae on seagrass blades. Journal of Marine Research, 1988. 46: p. 613-630.
  28. ^ Thomsen, M.S., et al., Harmful algae are not harmful to everyone. Harmful Algae, 2012. 16(0): p. 74-80.
  29. ^ Bishop, M.J., J. Fraser, and P.E. Gribben, Morphological traits and density of foundation species modulate a facilitation cascade in Australian mangroves. Ecology, 2013. 94: p. 1927–1936.
  30. ^ Thomsen, M.S., et al., Effects of the invasive macroalgae Gracilaria vermiculophylla on two co-occurring foundation species and associated invertebrates. Aquatic Invasions, 2013. 8: p. 133-145.