The haloacid dehydrogenase superfamily (HAD superfamily) is a superfamily of enzymes that include phosphatases, phosphonatases, P-type ATPases, beta-phosphoglucomutases, phosphomannomutases, and dehalogenases, and are involved in a variety of cellular processes ranging from amino acid biosynthesis to detoxification.[1]
Hydrolase_3 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
Symbol | Hydrolase_3 | ||||||||
Pfam | PF08282 | ||||||||
Pfam clan | CL0137 | ||||||||
ECOD | 2006.1.1 | ||||||||
|
Examples
editA HAD domain is found in several distinct proteins including:
- Phospholipid-translocating ATPase EC 3.6.3.1, a putative lipid-flipping enzyme involved in cold tolerance in Arabidopsis [2]
- 3-deoxy-D-manno-octulosonate (KDO) 8-phosphate phosphatase (EC 3.1.3.45), which catalyses the final step in the biosynthesis of KDO - a component of lipopolysaccharide in Gram-negative bacteria[3]
- Mannosyl-3-phosphoglycerate phosphatase (EC 3.1.3.70), which hydrolyses mannosyl-3-phosphoglycerate to form the osmolyte mannosylglycerate[4]
- Phosphoglycolate phosphatase (EC 3.1.3.18), which catalyses the dephosphorylation of 2-phosphoglycolate[5]
- 5´-Nucleotidase (EC 3.1.3.5) which either catalyzes the hydrolysis of IMP. or IMP and GMP
- Hypothetical proteins
Human genes encoding proteins that contain this domain include:
References
edit- ^ Koonin EV, Tatusov RL (November 1994). "Computer analysis of bacterial haloacid dehalogenases defines a large superfamily of hydrolases with diverse specificity. Application of an iterative approach to database search". Journal of Molecular Biology. 244 (1): 125–32. doi:10.1006/jmbi.1994.1711. PMID 7966317.
- ^ Gomès E, Jakobsen MK, Axelsen KB, Geisler M, Palmgren MG (December 2000). "Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases". The Plant Cell. 12 (12): 2441–2454. doi:10.2307/3871240. JSTOR 3871240. PMC 102229. PMID 11148289.
- ^ Wu J, Woodard RW (May 2003). "Escherichia coli YrbI is 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase". The Journal of Biological Chemistry. 278 (20): 18117–23. doi:10.1074/jbc.M301983200. PMID 12639950.
- ^ Empadinhas N, Marugg JD, Borges N, Santos H, da Costa MS (November 2001). "Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes". The Journal of Biological Chemistry. 276 (47): 43580–8. doi:10.1074/jbc.M108054200. PMID 11562374.
- ^ Kim Y, Yakunin AF, Kuznetsova E, Xu X, Pennycooke M, Gu J, Cheung F, Proudfoot M, Arrowsmith CH, Joachimiak A, Edwards AM, Christendat D (January 2004). "Structure- and function-based characterization of a new phosphoglycolate phosphatase from Thermoplasma acidophilum". The Journal of Biological Chemistry. 279 (1): 517–26. doi:10.1074/jbc.M306054200. PMC 2795321. PMID 14555659.